Skip to main content
Log in

Dense Subsets of H1/2(S2, S1)

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We prove that the maps from S 2 intoS 1 having a finite number of isolated singularities ofdegree ±1 are dense for the strong topology inH 1/2(S 2, S 1). We also prove that smooth maps are densein H 1/2(S 2, S 1)for the sequentially weak topology andthat this is no more the case in H s(S 2, S 1) for s> 1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bethuel, F.: The approximation problem for Sobolev mappings between manifolds, Acta Math. 167 (1991), 167–201.

    Google Scholar 

  2. Bethuel, F.: A characterization of maps in H1.B3; S2/ which can be approximated by smooth maps, Ann. Inst. Henri Poincaré 7 (1990), 269–286.

    Google Scholar 

  3. Bethuel, F.: Approximations in trace spaces defined between manifolds, Nonlinear Anal. 24 (1) (1995), 121–130.

    Google Scholar 

  4. Bethuel, F., Brezis, H. and Coron, J. M.: Relaxed energies for harmonic maps, in H. Berestycki, J. M. Coron and I. Ekeland (eds), Variational Problems, Birkhäuser, Basel, 1990, pp. 37–52.

    Google Scholar 

  5. Bethuel, F. and Zheng, X.: Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60–75.

    Google Scholar 

  6. Bethuel, F., Coron, J. M., Demengel, F. and Hélein, F.: A cohomological result for density of smooth maps in Sobolev spaces between two manifolds, in J. M. Coron, J. M. Ghidaglia and F. Hélein (eds), Proc. NATO workshop Nematic Liquid Crystals, Paris, 1990, pp. 15–23.

  7. Boutet de Monvel-Berthier, A., Georgescu, V. and Purice, R.: Sur un problème aux limites de la théorie de Ginzburg–Landau, C.R. Acad. Sci. Paris 307 (1988), 55–58.

    Google Scholar 

  8. Bourgain, J., Brezis, H. and Mironescu, P.: Martingale representation of Sobolev spaces and Ginzburg–Landau functionals, in preparation.

  9. Brezis, H., Coron, J.-M. and Lieb, E.: Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649–705.

    Google Scholar 

  10. Brezis, H. and Nirenberg, L.: Degree theory and BMO: I and II, Select. Math. New Ser. 1 (2) (1995), 197–263 and Select. Math. New Ser. 2(3) (1996), 309–368.

    Google Scholar 

  11. Demengel, F.: Une caractérisation des applications de W1;p.BN; S1/ qui peuvent être approchées par des fonctions C1, C.R. Acad. Sci. Paris 310 (1990), 553–557.

    Google Scholar 

  12. Demengel, F. and Hadiji, R.: Relaxed energies for functional on W1;1.B2; S1/, Nonlinear Anal. 19 (7) (1992), 625–641.

    Google Scholar 

  13. Federer, H.: Geometric Measure Theory, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  14. Federer, H.: Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974), 351–407.

    Google Scholar 

  15. Giaquinta, M., Modica, G. and Soucek, J.: Cartesian Currents in the Calculus of Variations I and I I, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  16. Hardt, R. and Lin, F.-H.: Mappings minimizing the Lp-norm of the gradient, Comm. Pure Appl. Math. 40 (1987), 555–588.

    Google Scholar 

  17. Lin, F. H. and Rivière, T.: Complex Ginzburg–Landau equations in high dimensions and codimension 2 area minimizing currents, J. Europ. Math. Soc. 1 (1999), 237–311.

    Google Scholar 

  18. Lin, F. H. and Rivière, T., Some complementary remarks to: Complex Ginzburg–Landau equations in high dimensions and codimension 2 area minimizing currents, Preprint, 1999.

  19. Rivière, T.: Lignes de tourbillon dans le modèle abelien de Higgs, C.R. Acad. Sci. Paris, Ser. 1 321 (1) (1995), 73–76.

    Google Scholar 

  20. Rivière, T.: Line vortices in the U.1/-Higgs model, ESAIM, Control. Optim. Calc. Var. 1 (1996), 77–167.

    Google Scholar 

  21. Schoen, R. and Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), 253–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivière, T. Dense Subsets of H1/2(S2, S1). Annals of Global Analysis and Geometry 18, 517–528 (2000). https://doi.org/10.1023/A:1006655723537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006655723537

Navigation