Skip to main content
Log in

Quantization of Teichmüller Spaces and the Quantum Dilogarithm

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Teichmüller space of punctured surfaces with the Weil–Petersson symplectic structure and the action of the mapping class group is realized as the Hamiltonian reduction of a finite-dimensional symplectic space where the mapping class group acts by symplectic rational transformations. Upon quantization, the corresponding (projective) representation of the mapping class group is generated by the quantum dilogarithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, A. Yu., Grosse, H. and Schomerus, V.: Combinatorial quantization of the Hamiltonian Chern–Simons theory I, II, Comm. Math. Phys. 172 (1995), 317–358; 174 (1995), 561–604.

    Google Scholar 

  2. Buffenoir, E. and Roche, Ph.: Link invariants and combinatorial quantization of Hamiltonian Chern–Simons theory, Comm. Math. Phys. 181 (1995), 331–365.

    Google Scholar 

  3. Faddeev, L.D.: Discrete Heisenberg–Weyl group andmodular group, Lett.Math. Phys. 34 (1995), 249–254.

    Google Scholar 

  4. Faddeev, L. D. and Kashaev, R. M.: Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), 427–434.

    Google Scholar 

  5. Fock, V. V., Rosly, A. A.: Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix. Preprint ITEP7292, 1992.

  6. Kashaev, R. M.:Quantum dilogarithmas a 6j-symbol, Modern Phys. Lett. A 9 (1994), 3757–3768.

    Google Scholar 

  7. Kashaev, R. M.: A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995), 1409–1418.

    Google Scholar 

  8. Kashaev, R. M.: The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math Phys. 39 (1997), 269–275.

    Google Scholar 

  9. Kashaev, R. M. and Sergeev, S.M.: On pentagon, tenterm, and tetrahedron relations, Preprint ENSLAPP-L-611/96, q-alg/9607032, 1996.

  10. Penner, R. C.: The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), 299–339.

    Google Scholar 

  11. Penner, R.C.: The moduli space of punctured surfaces, In: S. T. Yau (ed.), Mathematical Aspects of String Theory, World Scientific, Singapore, 1987.

    Google Scholar 

  12. Sergeev, S. M.: Private communication, 1996.

  13. Verlinde, H.: Conformal field theory, twodimensional quantum gravity and quantization of Teichmüller space, Nuclear Phys. B 337 (1990), 652–680.

    Google Scholar 

  14. Witten, E.: 2+1-dimensional gravity as an exactly soluble system, Nuclear Phys. B 311 (1988/89), 46–78.

    Google Scholar 

  15. Witten, E.: Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351–399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashaev, R.M. Quantization of Teichmüller Spaces and the Quantum Dilogarithm. Letters in Mathematical Physics 43, 105–115 (1998). https://doi.org/10.1023/A:1007460128279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007460128279

Navigation