Skip to main content
Log in

Small Deviations for Some Multi-Parameter Gaussian Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We prove some general lower bounds for the probability that a multi-parameter Gaussian process has very small values. These results, when applied to a certain class of fractional Brownian sheets, yield the exact rate for their so-called small ball probability. We show by example how to use such results to compute the Hausdorff dimension of some exceptional sets determined by maximal increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adler, R. J. (1990). An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Lecture Notes Monograph Series, Vol. 12, IMS, Hayward.

    Google Scholar 

  2. Anderson, T. W. (1955). The integral of symmetric unimodular functions over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6, 170–176.

    Google Scholar 

  3. Deheuvels, P., and Mason, D. M. (1994). On the fractal nature of empirical increments. Ann. Probab. 23, 355–387.

    Google Scholar 

  4. Deheuvels, P., and Mason, D. M. (1998). Random fractal functional laws of the iterated logarithm. Studia Sci. Math. Hungar. 34, 89–106.

    Google Scholar 

  5. Dunker, T. (2000). Estimates for the small probabilities of the fractional Brownian sheet. J. Theor. Probab. 13, 357–382.

    Google Scholar 

  6. Dunker, T., Kühn, T., Lifshits, M. A., and Linde, W. (1998). Metric entropy of the integration operator and small ball probabilities for the Brownian sheet. C. R. Acad. Sci. Paris Série I 326, 347–352.

    Google Scholar 

  7. Falconer, K. (1990). Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester.

    Google Scholar 

  8. Khatri, C. G. (1967). On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Statist. 38, 1853–1867.

    Google Scholar 

  9. Kuelbs, J., and Li, W. V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116, 133–157.

    Google Scholar 

  10. Kuelbs, J., and Li, W.V. (1993). Small ball estimates for Brownian motion and Brownian sheet. J. Theoret. Probab. 6, 547–577.

    Google Scholar 

  11. Ledoux, M. (1996). Isoperimetry and Gaussian analysis. In École d'Été de Saint-Flour XXIV. Lecture Notes in Mathematics, Vol. 1648, pp. 165–294, Springer, Berlin.

    Google Scholar 

  12. Ledoux, M., and Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes, Springer, Berlin.

    Google Scholar 

  13. Li, W. V., and Linde, W. (1998). Existence of small ball constants for fractional Brownian motions. C. R. Acad. Sci. Paris Sér. I 326, 1329–1334.

    Google Scholar 

  14. Li, W. V., and Linde, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab. 27, 1556–1578.

    Google Scholar 

  15. Li, W. V., and Shao, Q. M. (2000). Gaussian processes: Inequalities, small ball probabilities and applications. To appear in Stochastic Processes: Theory and Methods, Vol. 19, Rao, C. R., and Shanbhag, D., eds.

  16. Lifshits, M. A. (1995). Gaussian Random Functions, Kluwer, Dordrecht.

    Google Scholar 

  17. Lifshits, M. A. (1998). Asymptotic behavior of small ball probabilities, (preprint)

  18. Marcus, M. B., and Shepp, L.A. (1972). Sample behavior of Gaussian processes. In Proc. Sixth Berkeley Symp. Math. Statist. Probab., Vol. 2, pp. 423–441, University of California Press, Berkeley.

    Google Scholar 

  19. Orey, S., and Taylor, S. J. (1974). How often on a Brownian path does the law of iterated logarithm fail? Proc. London Math. Soc. 28 (3), 174–192.

    Google Scholar 

  20. Schechtman, G., Schlumprecht, T., and Zinn, J. (1998). On the Gaussian measure of the intersection. Ann. Probab. 26, 346–357.

    Google Scholar 

  21. Shao, Q. M. (1998). A Gaussian correlation inequality and its application to the existence of small ball constant. Preprint.

  22. Shao, Q. M., and Wang, D. (1995). Small ball probabilities of Gaussian fields. Probab. Theory Rel. Fields 102, 511–517.

    Google Scholar 

  23. Šidák, Z. (1968). On multivariate normal probabilities of rectangles: their dependence on correlations. Ann. Math. Statist. 39, 1425–1434.

    Google Scholar 

  24. Stolz, W. (1996). Some small ball probabilities for Gaussian processes under nonuniform norms. J. Theoret. Probab. 9, 613–630.

    Google Scholar 

  25. Talagrand, M. (1994). The small ball problem for the Brownian sheet. Ann. Probab. 22, 1331–1354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, D.M., Shi, Z. Small Deviations for Some Multi-Parameter Gaussian Processes. Journal of Theoretical Probability 14, 213–239 (2001). https://doi.org/10.1023/A:1007833401562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007833401562

Navigation