Skip to main content
Log in

Compound Poisson Processes and Lévy Processes in Groups and Symmetric Spaces

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

A sample path description of compound Poisson processes on groups is given and applied to represent Lévy processes on connected Lie groups as almost sure limits of sequences of Brownian motions with drift interlaced with random jumps. We obtain spherically symmetric Lévy processes in Riemannian symmetric spaces of the form M=G\K, where G is a semisimple Lie group and K is a compact subgroup by projection of symmetric horizontal Lévy processes in G and give a straightforward proof of Gangolli's Lévy–Khintchine formula for their spherical transform. Finally, we show that such processes can be realized in Fock space in terms of creation, conservation, and annihilation processes. They appear as generators of a new class of factorizable representations of the current group C(R +G). In the case where M is of noncompact type, these Fock space processes are indexed by the roots of G and the natural action of the Weyl group of G induces a (send quantized) unitary equivalence between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Albevero, S., Høegh-Krohn, R., Marion, J., Testard, D., and Torrésani, B. (1993). Non-commutative Distributions, Marcel Dekker, Inc.

  2. Applebaum, D. (1995). A horizontal Lévy process on the bundle of orthonormal frames over a complete Riemannian manifold. In J. Azéma, M. Emery, P. A. Meyer, and M. Yor (eds.), Séminaire de Probabilités XXIX, Lecture Notes in Math., Vol. 1603, Springer-Verlag, Berlin/Heidelberg, pp. 166-181.

    Google Scholar 

  3. Applebaum, D. (1996). Covariant Poisson fields in Fock space. In R. Bhatia (ed.), Analysis, Geometry and Probability, Essays in Honor of K.R. Parthasarathy, Hindustan Book Agency, pp. 1-16.

  4. Applebaum, D., and Brooks, M. (1996). Infinite series of quantum spectral stochastic integrals. J. Oper. Th. 36, 295-316.

    Google Scholar 

  5. Applebaum, D., and Kunita, H. (1993). Lévy flows on manifolds and Lévy processes on Lie groups. J. Math. Kyoto Univ. 33, 1103-1123.

    Google Scholar 

  6. Araki, H. (1970). Factorizable representation of current algebra. Publ. Res. Inst. Math. Sci. (Kyoto Univ.) 5, 361-422.

    Google Scholar 

  7. Bertoin, J. (1996). Lévy Processes, Cambridge University Press.

  8. Bretagnolle, J. L. (1973). Processus a accroissments independants. In Lecture Notes Math., Vol. 307, Springer-Verlag, Berlin/Heidelberg, pp. 1-26.

    Google Scholar 

  9. Cohen, S. (1995). Some Markov properties of stochastic differential equations with jumps. In J. Azéma, M. Emery, P. A. Meyer, and M. Yor (eds.), Séminaire de Probabilités XXIX, Lecture Notes in Math., Vol. 603, Springer-Verlag, Berlin/Heidelberg, pp. 181-194.

    Google Scholar 

  10. Elworthy, K. D. (1982). Stochastic Differential Equations on Manifolds, Cambridge University Press.

  11. Elworthy, K. D. (1988). Geometric aspects of diffusions on manifolds in école d'été de probabilités de Saint Flour XVII. In P. L. Hennequin (ed.), Lecture Notes in Math., Vol. 1362, Springer-Verlag, Berlin/Heidelberg, pp. 276-425.

    Google Scholar 

  12. Estrade, A. (1990). Calcul Stochastique Discontinu sur les Groups des Lie, Université d'Orleans, Ph. D. thesis.

  13. Estrade, A. (1992). Exponentielle stochastique et intégrale multiplicatives discontinu. Ann. Inst. Henri Poincaré (Prob. Stat.) 28, 107-129.

    Google Scholar 

  14. Feinsilver, P. (1978). Processes with independent increments on a Lie group. Trans. Amer. Math. Soc. 242, 73-121.

    Google Scholar 

  15. Fristedt, B., and Gray, L. (19997). A Modern Approach to Probability Theory, Birkhäuser, Boston.

  16. Fujiwara, T. (1991). Stochastic differential equations of jump type on manifolds and Lévy flows. J. Math. Kyoto Univ. 31, 99.

    Google Scholar 

  17. Galmarino, A. R. (1963). Representation of an isotropic diffusion as a skew product. Z. Wahrsch. Verw. Geb. 1, 359-378.

    Google Scholar 

  18. Gangolli, R. (1964). Isotropic infinitely divisible measures on symmetric spaces. Acta Math. 111, 213-246.

    Google Scholar 

  19. Gangolli, R. (1965). Sample functions of certain differential processes on symmetric spaces. Pacific J. Math. 15, 477-496.

    Google Scholar 

  20. Getoor, R. K. (1961). Infinite divisible probabilities on the hyperbolic plane. Pacific J. Math. 11, 1387-1308.

    Google Scholar 

  21. Guichardet, A. (1972). Symmetric Hilbert Spaces and Related Topic, Lecture Notes Math., Vol. 261, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  22. Helgason, S. (1978). Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press.

  23. Helgason, S. (1984). Groups and Geometric Analysis, Academic Press.

  24. Heyer, H. (1977). Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  25. Hudson, R. L., and Parthasarathy, K. R. (1984). Quantum Itô's formula and stochastic evolution. Commun. Math. Phys. 93, 301-323.

    Google Scholar 

  26. Hunt, G.A. (1956). Semigroups of measures on Lie groups. Trans. Amer. Math. Soc. 81, 264-293.

    Google Scholar 

  27. Itô, K. (1950). Brownian motions on a Lie group. Proc. Japan Acad. 26, 4-10.

    Google Scholar 

  28. Knapp, A. W. (1996). Lie Groups Beyond An Introduction, Birkhäuser, Boston.

  29. Kobayishi, S., and Nomizu, K. (1963). Foundations of Differential Geometry, Vol. 1, Wiley, Interscience, New York.

    Google Scholar 

  30. Kunita, H. (1994). Stable Lévy processes on nilpotent Lie groups. In Stochastic Analysis in Infinite-Dimensional Spaces, Pitman Res. Notes on Math. Ser. A, pp. 167-182.

  31. Liao, M. (1994). The Brownian motion and the canonical stochastic flow on a symmetric space. Trans. Amer. Math. Soc. 341, 253-274.

    Google Scholar 

  32. McKean, H. P. (1969). Stochastic Integrals, Academic Press.

  33. Marcus, S. I. (1981). Modelling and approximation of stochastic differential equations driven by semimartingales. Stochastics 4, 223-245.

    Google Scholar 

  34. Malliavin, M. P., and Malliavin, P. (1974). Factorisations et lois limites de la diffusion horizontale au-dessus d'un espaces Riemmanian symetrique. In Théorie du Potentiel et Analyse Harmonique, Lecture Notes Math., Vol. 404, Springer-Verlag, Berlin, pp. 164-217.

    Google Scholar 

  35. Nelson, E. (1959). Analytic vectors. Ann. Math. 70, 572-615.

    Google Scholar 

  36. Newman, C. M. (1972). Ultralocal quantum field theory in terms of currents. Commun. Math. Phys. 26, 169-204.

    Google Scholar 

  37. Nomizu, K. (1956). Lie groups and differential geometry. Publ. Math. Soc. Japan 2.

  38. Parthasarathy, K. R., and Schmidt, K. (1972). Positive definite kernels, continuous tensor products and central limit theorems of probability theory, Lecture Notes Math., Vol. 272, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  39. Parthasarathy, K. R. (1992). An Introduction to Quantum Stochastic Calculus, Birkhäuser, Verlag, Basel.

    Google Scholar 

  40. Parthasarathy, K. R. (1986). One parameter semigroups of completely positive maps on groups arising from quantum stochastic differential equations. Boll. Un. Math. Ital. 5A, 391-397.

    Google Scholar 

  41. Ramaswami, S. (1974). Semigroups of measures on Lie groups. J. Indian Math. Soc. 38, 175-189.

    Google Scholar 

  42. Streater, R. F. (1969). Current commutation relations, continuous tensor products and infinitely divisible group representations. In R. Jost (ed.), Local Quantum Theory, Academic Press.

  43. Taylor, J. C. (1988). The Iwasawa decomposition and the limiting behavior of Brownian motion on a symmetric space of non-compact type. Contemp. Math. 73, 303-332.

    Google Scholar 

  44. Terras, A. (1985, 1988). Harmonic analysis on Symmetric Spaces and Applications, Vols. 1 and 2, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Applebaum, D. Compound Poisson Processes and Lévy Processes in Groups and Symmetric Spaces. Journal of Theoretical Probability 13, 383–425 (2000). https://doi.org/10.1023/A:1007845508326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007845508326

Navigation