Skip to main content
Log in

A Random Walk Approach to Galton–Watson Trees

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

There are several constructions connecting random walks to branching trees. Here we discuss an approach linking Galton–Watson trees with arbitrary offspring distribution to random walk excursions resp. bridges. In special situations this leads to a connection to three basic statistics from statistical mechanics. Other applications include the description of random subtrees and the contour process of a Galton–Watson tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aldous, D. J. (1990). The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J. Disc. Math. 3, 450–465.

    Google Scholar 

  2. Aldous, D. J. (1991). Asymptotic fringe distributions for general families of random trees. Ann. Appl. Prob. 1, 228–266.

    Google Scholar 

  3. Aldous, D. J. (1991). The continuum random tree II: An overview. In Barlow, M., and Bingham, N. (eds.), Stochastic Analysis, Cambridge University Press, pp. 23–70.

  4. Aldous, D. J. (1993). The continuum random tree III. Ann. Prob. 21, 248–289.

    Google Scholar 

  5. Bennies, J. (1995). Zur Konstruktion von zufälligen Bäumen durch Irrfahrten, Diplom Thesis, Frankfurt/Main.

  6. Berg, S., and Mutafchiev, L. R. (1990). Random mappings with an attracting center: Lagrangian distributions and a regression function. J. Appl. Prob. 27, 622–636.

    Google Scholar 

  7. Borovkov, K. A., and Vatutin, V. A. (1996). On distribution tails and expectations of maxima in critical branching processes. J. Appl. Prob. 33, 614–622.

    Google Scholar 

  8. Durrett, R. T., Iglehart, D. L., and Miller, D. R. (1977). Weak convergence to Brownian meander and Brownian excursion. Ann. Prob. 5, 117–129.

    Google Scholar 

  9. Dwass, M. (1969). The total progeny in a branching process and a related random walk. J. Appl. Prob. 6, 682–686.

    Google Scholar 

  10. Feller, W. (1966). An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, Pinceton.

    Google Scholar 

  11. Geiger, J. (1997). Growing conditioned Galton-Watson trees from the top, Preprint.

  12. Geiger, J., and Kersting, G. (1995). Depth-first search of random trees, and Poisson point processes. In Athreya and Jagers (eds.), Classical and Modern Branching Process, pp. 111–127.

  13. Grimmett, G. R. (1980). Random labelled trees and their branching networks. J. Austral. Math. Soc. Ser. A 30, 229–237.

    Google Scholar 

  14. Harris, T. E. (1952). First passage and recurrence distributions. Trans. Amer. Math. Soc. 73, 471–486.

    Google Scholar 

  15. Harris, T. E. (1963). The Theory of Branching Processes, Springer, Heidelberg.

    Google Scholar 

  16. Joffe, A., and Waugh, W. A. O'N. (1982). Exact distribution of kin numbers in a Galton-Watson process. J. Appl. Prob. 19, 767–776.

    Google Scholar 

  17. Kaigh, W. D. (1976). An invariance principle for random walk conditioned by a late return to zero. Ann. Prob. 4, 115–121.

    Google Scholar 

  18. Kennedy, D. P. (1975). The Galton-Watson process conditioned on the total progeny. J. Appl. Prob. 12, 800–806.

    Google Scholar 

  19. Kersting, G. (1998). On the height profile of a conditioned Galton-Watson tree, preprint.

  20. Kolchin, V. F. (1986). Random Mappings, Optimization Software, New York.

    Google Scholar 

  21. Kolmogorov, A. (1938). Zur Lösung einer biologischen Aufgabe, Izv. NII. mathem. i mek. Tomskogo un. 2, 1–12.

  22. Le Gall, J. F. (1989). Marches aléatoires, mouvement brownien et processus de branchement, Seminaire de Probabilites XXIII, Lecture Notes in Math., Vol. 1372, Springer, pp. 258–274.

  23. Le Gall, J. F., and Le Jan, Y. (1998). Branching processes in Lévy-processes: The exploration process. Ann. Prob. 26, 213–252.

    Google Scholar 

  24. Lindvall, T. (1976). On the maximum of a branching process. Scand. J. Statist. Theory Appl. 3, 209–214.

    Google Scholar 

  25. Lyons, R., Pemantle, R., and Peres, Y. (1995). Conceptual proofs of L log L criteria for mean behaviour of branching processes. Ann. Prob. 23, 1125–1138.

    Google Scholar 

  26. Neveu, J. (1986). Arbres et processus de Galton-Watson. Ann. Inst. Henri Poincaré 22, 199–207.

    Google Scholar 

  27. Pitman, J. W. (1975). One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Prob. 7, 511–526.

    Google Scholar 

  28. Pitman, J. W. (1997). Enumerations of Trees and Forests related to Branching Processes and Random Walks, Technical Report No. 503, Berkely.

  29. Roger, C., and Williams, D. (1987). Markoff Processes, and Martingales, Vol. 2, Wiley, Chichester.

    Google Scholar 

  30. Spencer, J. (1993). Nine lectures on random graphs. In Hennequin, P. L. (ed.), Ecole d'été de Probabilités de Saint-Flour XXXI, 1991, Lecture Notes in Mathematics, Vol. 1541, Springer.

  31. Spitzer, F. (1964). Principles of Random Walk, Wiley, Princeton.

    Google Scholar 

  32. Takács, L. (1977). Combinatorial Methods in the Theory of Stochastic Processes, Krieger Publ., New York.

    Google Scholar 

  33. Takács, L. (1990). Counting forests. Discrete Mathematics 84, 323–326.

    Google Scholar 

  34. Takács, L. (1993). Limit distributions of queues and random rooted trees. J. Appl. Math. and Stoch. Anal. 6, 189–216.

    Google Scholar 

  35. Tierney, L. (1994). Markov chains for exploring Posterior Distributions. Ann. Stat. 4, 1701–1762.

    Google Scholar 

  36. Vervaat, W. (1979). A relation between Brownian bridges and Brownian excursions. Ann. Prob. 7, 143–149.

    Google Scholar 

  37. Viskov, O. V. (1970). Some comments on branching processes. Math. Zametki 8(4), 701–705.

    Google Scholar 

  38. Waymire, E. C. (1991). On network structure function computations. In Brillinger, D., Rosenblatt, M., and Taqqu, M. (eds.), Time Series, Springer, Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennies, J., Kersting, G. A Random Walk Approach to Galton–Watson Trees. Journal of Theoretical Probability 13, 777–803 (2000). https://doi.org/10.1023/A:1007862612753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007862612753

Navigation