Skip to main content
Log in

Asymptotic Properties of Ranked Heights in Brownian Excursions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Pitman and Yor(20, 21) recently studied the distributions related to the ranked excursion heights of a Brownian bridge. In this paper, we study the asymptotic properties of the ranked heights of Brownian excursions. The heights of both high and low excursions are characterized by several integral tests and laws of the iterated logarithm. Our analysis relies on the distributions of the ranked excursion heights considered up to some random times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abramowitz, M., and Stegun, I. A. (1965). Handbook of Mathematical Functions, Dover, New York.

    Google Scholar 

  2. Bertoin, J. (1990). Excursions of a BES 0(d ) and its drift term (0 < d < 1). Prob. Th. Rel. Fields 84, 231–250.

    Google Scholar 

  3. Biane, Ph., and Yor, M. (1987). Valeurs principales associées aux temps locaux Browniens. Bull. Sci. Math. 111, 23–101.

    Google Scholar 

  4. Ciesielski, Z., and Taylor, S. J. (1962). First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103, 434–450.

    Google Scholar 

  5. Csáki, E. (1978). On the lower limits of maxima and minima of Wiener process and partial sums. Z. Wahrsch. verw. Gebiete. 43, 205–221.

    Google Scholar 

  6. Csáki, E., Erd\(\begin{gathered} \prime \prime \hfill \\ {\text{o}} \hfill \\ \end{gathered}\)s, P., and Révész, P. (1985). On the length of the longest excursion. Z. Wahrsch. verw. Gebiete 68, 365–382.

    Google Scholar 

  7. Csáki, E., and Hu, Y. (1999). On the joint asymptotic behaviours of ranked heights of Brownian excursions. (Preprint).

  8. Csörg\(\begin{gathered} \prime \prime \hfill \\ {\text{o}} \hfill \\ \end{gathered}\), M., and Révész, P. (1981). Strong Approximations in Probability and Statistics, Akadémiai Kiadó, Budapest and Academic Press, New York.

    Google Scholar 

  9. Dembo, A., and Zeitouni, O. (1993). Large Deviations Techniques and Applications, Jones and Bartlett, Boston.

    Google Scholar 

  10. Erd\(\begin{gathered} \prime \prime \hfill \\ {\text{o}} \hfill \\ \end{gathered}\)s, P. (1942). On the law of the iterated logarithm. Ann. Math. 43, 419–436.

    Google Scholar 

  11. Feller, W. (1970). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., Wiley, New York.

    Google Scholar 

  12. Getoor, R. K. (1979). The Brownian escape process. Ann. Prob. 7, 864–867.

    Google Scholar 

  13. Gruet, J. C., and Shi, Z. (1996). The occupation time of Brownian motion in a ball. J. Theoret. Prob. 9, 429–445.

    Google Scholar 

  14. Hu, Y., and Shi, Z. (1997). Extreme lengths in Brownian and Bessel excursions. Bernoulli 3, 387–402.

    Google Scholar 

  15. Hu, Y., and Shi, Z. (1999). Shortest excursion lengths. Ann. Inst. Henri Poincaré 35, 103–120.

    Google Scholar 

  16. Kent, J. (1978). Some probabilistic properties of Bessel functions. Ann. Prob. 6, 760–770.

    Google Scholar 

  17. Kochen, S. B., and Stone, C. J. (1964). A note on the BorelûCantelli lemma. Illinois J. Math. 8, 248–251.

    Google Scholar 

  18. Pitman, J. W., and Yor, M. (1997). On the lengths of excursions of some Markov processes. Sém. Probab. XXXI, Lecture Notes in Math., Vol. 1655, Springer, Berlin, pp. 272–286.

    Google Scholar 

  19. Pitman, J. W., and Yor, M. (1997). On the relative lengths of excursions derived from a stable subordinator. Ibid. pp. 287–305.

    Google Scholar 

  20. Pitman, J. W., and Yor, M. (1998). Ranked functionals of Brownian excursions. C. R. Acad. Sci. Paris, Série I 326, 93–97.

    Google Scholar 

  21. Pitman, J. W., and Yor, M. (1999). On the distribution of ranked heights of excursions of a Brownian bridge. Ann. Prob., to appear.

  22. Révész, P. (1990). Random Walk in Random and Non-Random Environments, World Scientific Press, Singapore, London.

    Google Scholar 

  23. Révész, P. (1998). Long excursions and iterated processes. In Szyszkowicz, B. (ed.), Asymptotic Methods in Probability and Statistics (a volume in honour of Miklós Csörg \(\begin{gathered} \prime \prime \hfill \\ {\text{o}} \hfill \\ \end{gathered}\)), Elsevier Science B.V., Amsterdam, New York, pp. 243–249.

    Google Scholar 

  24. Revuz, D., and Yor, M. (1994). Continuous Martingales and Brownian Motion, 2nd ed., Springer, Berlin.

    Google Scholar 

  25. Shiryaev, A. N. (1996). Probability, 2nd ed., Springer, New York.

    Google Scholar 

  26. Williams, D. (1974). Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. Ser. 3, 28, 738–768.

    Google Scholar 

  27. Yor, M. (1995). Local Times Land Excursions for Brownian Motion: A Concise Introduction, Lecciones en Matemáticas, NÚmero I, Universidad Central de Venezuela, Caracas.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csáki, E., Hu, Y. Asymptotic Properties of Ranked Heights in Brownian Excursions. Journal of Theoretical Probability 14, 77–96 (2001). https://doi.org/10.1023/A:1007868914766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007868914766

Navigation