Skip to main content
Log in

Symmetry Reductions of Equations for Solute Transport in Soil

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Solute transport in saturated soil is represented by anonlinear system consisting of a Fokker–Planck equation coupled toLaplace's equation. Symmetries, reductions and exact solutions are foundfor two dimensional transient solute transport through some nontrivialwedge and spiral steady water flow fields. In particular, the mostgeneral complex velocity potential is determined, such that the soluteequation admits a stretching group of transformations that wouldnormally be possessed by a point source solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jury, W. A., ‘Solute transport and dispersion’, in Flow and Transport in the Natural Environment: Advances and Applications, W. L. Steffen and O. T. Denmead (eds.), Springer-Verlag, Berlin, 1988, pp. 1-16.

    Google Scholar 

  2. Woods, J., Simmons, C. T., and Narayan, K. A., ‘Verification of black box groundwater models’, in EMAC98 Proceedings of the Third Biennial Engineering Mathematics and Applications Conference, E. O. Tuck and J. A. K. Stott (eds.), Institution of Engineers Australia, Adelaide, 1998, pp. 523-526.

    Google Scholar 

  3. Wierenga, P. J., ‘Water and solute transport and storage’, in Handbook of Vadose Zone Characterization and Monitoring, L. G. Wilson, G. E. Lorne, and S. J. Cullen (eds.), Lewis Publishers, Boca Raton, FL, 1995, pp. 41-60.

    Google Scholar 

  4. Ségol, G., Classic Groundwater Simulations: Proving and Improving Numerical Models, Prentice Hall, Englewood Cliffs, NJ, 1994.

    Google Scholar 

  5. Salles, J., Thovert, J.-F., Delannay, R., Presons, L., Auriault, J.-L., and Adler, P. M., ‘Taylor dispersion in porous media: Determination of the dispersion tensor’, Physics of Fluids A 5, 1993, 2348-2376.

    Google Scholar 

  6. Philip, J. R., ‘Some exact solutions of convection-diffusion and diffusion equations’, Water Resources Research 30, 1994, 3545-3551.

    Google Scholar 

  7. van Genuchten, M. T. and Alves, W. J., ‘Analytical solutions of the one-dimensional convective-dispersive solute transport equation’, U.S. Department of Agriculture, Technical Bulletin 1661, 1982, 1-151.

    Google Scholar 

  8. Philip, J. R., ‘Theory of infiltration’, Advances in Hydrosciences 5, 1969, 215-296.

    Google Scholar 

  9. Sherring, J., ‘DIMSYM: Symmetry determination and linear differential equations package’, Research Report, Latrobe University Mathematics Department, 1993, http://www.latrobe.edu.au/www/mathstats/ Maths/Dimsym/

  10. Maas, L. R. M., ‘A closed form Green function describing diffusion in a strained flow field’, SIAM Journal of Applied Mathematics 49, 1989, 1359-1373.

    Google Scholar 

  11. Zoppou, C. and Knight, J. H., ‘Analytical solution of a spatially variable coefficient advection-diffusion equation in one-, two-and three-dimensions’, Preprint, CSIRO, Land and Water, Canberra, 1998.

    Google Scholar 

  12. Abramowitz, M. and Stegun, I. A. (eds.), Handbook of Mathematical Functions, Dover, New York, 1972.

    Google Scholar 

  13. Redfern, D., The Maple Handbook, Springer-Verlag, New York, 1996.

    Google Scholar 

  14. Ibragimov, N. H. (ed.) CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 2, Section 8.12.1, CRC Press, Boca Raton, FL, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broadbridge, P., Hill, J.M. & Goard, J.M. Symmetry Reductions of Equations for Solute Transport in Soil. Nonlinear Dynamics 22, 15–27 (2000). https://doi.org/10.1023/A:1008309107295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008309107295

Navigation