Skip to main content
Log in

Diffusion Equations and Geometric Inequalities

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let θ =(θ0, θ1) be a fixed vector in R 2 with strictly positive components and suppose σ0, σ1 > 0. Set σθ = θ0 σ0 + θ1 σ1 and, if x 0, x 1R n, set x θ = θ0 x 0 + θ1 x 1. Moreover, for any j ∈{0, 1, θ}, let c j : R nR be a continuous, bounded function and denote by p σ j , c j (t, x, y) the fundamental solution of the diffusion equation

$$\frac{{\partial \upsilon }}{{\partial t}} = \frac{{\sigma _j^2 }}{2}\Delta \upsilon - \frac{1}{{\sigma _j^2 }}cjx\upsilon ,t >0,x \in {\mathbf{R}}^n$$

If

$$\frac{1}{{\sigma \theta }}c_\theta \left( {x_\theta } \right) \leqslant \frac{{\theta _0 }}{{\sigma _0 }}\left( {x_0 } \right) + \frac{{\theta _1 }}{{\sigma 1}}c_1 \left( {x_1 } \right),x_0 ,x_1 \in {\mathbf{R}}^n$$

then by applying the Girsanov transformation theorem of Wiener measure it is proved that

σn θ p σ θ, c θ(t, x θ, y θ) ≥{σn 0 p σ 0, c 0(t, x 0, y 0)}θ 0 σ0 / σθn 1 p σ 1, c 1(t, x 1, y 1)}θ 1 σ1 / σθ for all x 0, x 0, y 0, y 1R n and t > 0. Finally, in the last section, another proof of this inequality is given more in line with earlier investigations in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borell, Ch.: ‘Convex measures on locally convex spaces’, Ark.Math. 12 (1974), 239–252.

    Google Scholar 

  2. Borell, Ch.: ‘Convex set functions in d-space’, Period.Math.Hungar. 6 (1975), 111–136.

    Google Scholar 

  3. Borell, Ch.: ‘Hitting probabilities of killed Brownian motion: a study on geometric regularity’, Ann.Sci.École Norm.Sup. 17 (1984), 451–467.

    Google Scholar 

  4. Borell, Ch.: ‘Greenian potentials and concavity’, Math.Ann. 272 (1985), 155–160.

    Google Scholar 

  5. Borell, Ch.: ‘Geometric properties of some familiar diffusions in R n’, Ann.Probab. 21 (1993), 482–489.

    Google Scholar 

  6. Brascamp, H. J. and Lieb, E. H.: ‘Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma’, in: A.M. Arthurs (ed.), Functional integration and its applications. Clarendon Press, Oxford, 1975, pp. 1–14.

    Google Scholar 

  7. Brascamp, H. J. and Lieb, E. H.: ‘On extensions of the Brunn–Minkowski and Prékopa– Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation’. Functional Analysis. 22 (1976), 366–389.

    Google Scholar 

  8. Dynkin, E. B.: Markov Process, Vol. 1 and 2, Springer-Verlag, Berlin, Heidelberg, New York, 1965.

    Google Scholar 

  9. Feynman, R. P.: Statistical Mechanics, W. A. Benjamin, Inc., Reading, Massachusetts, 1972.

    Google Scholar 

  10. Fleming, W. H. and Soner, H. M.: Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, Berlin, Heidelberg, New York, 1993.

    Google Scholar 

  11. Hörmander, L.: Notions of Convexity, Birkhäuser, Boston, 1994.

    Google Scholar 

  12. Kawohl, B.: ‘When are superharmonic functions concave? Applications to the St. Venant torsion problem and to the fundamental mode of the clamped membrane’, Z.Angew.Math.Mech. 64 (1984), 364–366.

    Google Scholar 

  13. Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE, Lecture Notes 1150, Springer-Verlag, Berlin, Heidelberg, New York, 1985.

    Google Scholar 

  14. Ledoux, M. and Talagrand, M.: Probability in Banach Spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1991.

    Google Scholar 

  15. Nualart, D.: The Malliavin Calculus and Related Topics, Springer-Verlag, Berlin, Heidelberg, New York, 1995.

    Google Scholar 

  16. Prékopa, A.: ‘Logarithmic concave measures with applications to stochastic programming’. Acta Sci.Math. (Szeged) 32 (1971), 301–315.

    Google Scholar 

  17. Prékopa, A.: Stochastic Programming, Kluwer Academic Publishers, Dordrecht, Boston, London, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borell, C. Diffusion Equations and Geometric Inequalities. Potential Analysis 12, 49–71 (2000). https://doi.org/10.1023/A:1008641618547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008641618547

Navigation