Skip to main content
Log in

Malliavin Calculus for White Noise Driven Parabolic SPDEs

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We consider the parabolic SPDE

$$\partial _t X\left( {t,x} \right) = \partial _{_x }^2 X\left( {t,x} \right) + \psi \left( {X\left( {t,x} \right)} \right) + \varphi \left( {X\left( {t,x} \right)} \right)\dot W\left( {t,x} \right),\left( {t,x} \right) \in R_ + \times \left[ {0,1} \right]$$

with the Neuman boundary condition

$${{\partial x}}\left( {t,0} \right) = \frac{{\partial X}} {{\partial x}}\left( {t,1} \right) = 1$$

and some initial condition.

We use the Malliavin calculus in order to prove that, if the coefficients ϕ and ψ are smooth and ϕ > 0, then the law of any vector (X(t,x1),..., X(t,xd)), 0 ≤ x1 ≤ ... ≤ xd ≤ 1, has a smooth, strictly positive density with respect to Lebesgue measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aida, S., Kusuoka, S. and Stroock, D.: ‘On the support of Wiener functionals’, in: Elworthy, K.D. and Ikeda, N. (eds.), Asymptotic problems in probability theory: Wiener functionals and asymptotics, Pitman Research Notes in Math. 284, Longman Sci. Tech., 1993, pp. 3–34.

  2. Ben Arous, G. and Léandre, R.: ‘Décroissance exponentielle du noyau de la chaleur sur la diagonale II’, Prob. Theory Relat. Fields 90 (1991), 377–402.

    Google Scholar 

  3. Carmona, R. and Nualart, D.: ‘Random non-linear wave equations: Smoothness of the solution’, Probab. Theory Related Fields 79 (1988), 464–508.

    Google Scholar 

  4. Donati-Martin, C. and Pardoux, E.: ‘White noise driven SPDEs with reflection’, Probab. Theory Relat. Fields 95 (1993), 1–24.

    Google Scholar 

  5. Ikeda, N. and Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.

  6. Métivier, M.: Semimartingales, de Gruyter, 1982.

  7. Millet, A. and Sanz-Solé, M.: ‘Points of positive density for the solution to hyperbolic equations’, Potential Analysis 7 (1997), 623–659.

    Google Scholar 

  8. Nualart, D.: ‘Analysis on Wiener space and anticipating stochastic calculus’, in: P. Bernard (ed.), Ecole d'Eté de Probabilités de St Flour 1995, LNM, Springer, to appear.

  9. Nualart, D.: The Malliavian Calculus and Related Fields, Springer, 1995.

  10. Nualart, D. and Sanz, M.: ‘Malliavin Calculus for two-parameter Wiener Functionals’, Z. Wahrs. Verw. Geb. 70 (1985), 573–590.

    Google Scholar 

  11. Nualart, D. and Zakai, M.: ‘Generalized Brownian Functionals and the Solution of a Stochastic Partial Differential Equation’, J. of Funct. Anal. 84 (1989), 279–296.

    Google Scholar 

  12. Pardoux, E. and Zhang, T.: ‘Absolute continuity for the law of the solution of a parabolic SPDE’, J. of Funct. Anal. 112 (1993), 447–458.

    Google Scholar 

  13. Walsh, J.B.: ‘An introduction to stochastic partial differential equations’, in Ecole d'Eté de Probabilités de Saint Flour XV, Lecture Notes in Math. 1180, Springer, 1986, pp. 266–437.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bally, V., Pardoux, E. Malliavin Calculus for White Noise Driven Parabolic SPDEs. Potential Analysis 9, 27–64 (1998). https://doi.org/10.1023/A:1008686922032

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008686922032

Navigation