Skip to main content
Log in

On q-Analogues of Bounded Symmetric Domains and Dolbeault Complexes

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A very well known result by Harish-Chandra claims that any Hermitiansymmetric space of non-compact type admits a canonical embedding into acomplex vector space V. The image of this embedding is a bounded symmetricdomain in V. This work provides a construction of q-analogues of apolynomial algebra on V and the differential algebra of exterior forms on V.A way of producing a q-analogue of the bounded function algebra in a boundedsymmetric domain is described. All the constructions are illustrated bydetailed calculations in the case of the simplest Hermitian symmetric spaceSU (1,1)/U(1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, E.: Hopf Algebras, Cambridge Univ. Press, Cambridge, 1980.

    Google Scholar 

  2. Bopp, P. N. and Rubenthaler, H.: Fonction zêta associée à la série principale sphérique de certain espaces symmétriques, Ann. Sci. École Norm. Sup. (4) 26(1993), 701–745.

    Google Scholar 

  3. Chari, V. and Pressley, A.: A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  4. de Concini, C. and Kac, V.: Representations of quantum groups at roots of 1, in: A. Connes, M. Duflo, A. Joseph and R. Rentschler (eds), Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, 1990, Birkhauser, Boston, pp. 471–506.

    Google Scholar 

  5. Dixmier, J.: Les C*-algèbres et leur représentations, Gauthier-Villars, Paris, 1964.

    Google Scholar 

  6. Drinfeld, V. G.: Quantum groups, in: A. M. Gleason (ed), Proceedings of the International Congress of Mathematicians, Berkeley, 1986, American Mathematical Society, Providence, R.I., 1989, pp. 798–820.

    Google Scholar 

  7. Drinfeld, V. G.: On almost commutative Hopf algebras, Leningrad Math. J. 1(1990), 321–432.

    Google Scholar 

  8. Helgason, S.: Differential Geometry and Symmetric Spaces, Acad. Press, NY, London, 1962.

    Google Scholar 

  9. Humphreys, J. E.: Reflection Groups and Coxeter Groups, Cambridge Univ. Press, 1990.

  10. Joyal, A. and Street, R.: Braided tensor categories, Adv. in Math. 102(1993), 20–78.

    Google Scholar 

  11. Kassel, C.: Quantum Groups, Springer-Verlag, NY, Berlin, Heidelberg, 1995.

    Google Scholar 

  12. Klimek, S. and Lesniewski, A.: A two-parameter quantum deformation of the unit disc, J. Funct. Anal. 115(1993), 1–23.

    Google Scholar 

  13. Kelley, J. L. and Namioka, I.: Linear Topological Spaces, Van Nostrand Inc., Princeton, NY, London, 1963.

    Google Scholar 

  14. Khoroshkin, S., Radul, A. and Rubtsov, V.: A family of Poisson structures on compact Hermitian symmetric spaces, Comm. Math. Phys. 152(1993), 299–316.

    Google Scholar 

  15. Lustig, G.: Quantum groups at roots of 1, Geom. Dedicata 35(1990), 89–114.

    Google Scholar 

  16. Levendorskii, S. Z. and Soibelman, Ya. S.: Some applications of the quantum Weil group, J. Geom. Phys. 7(1990), 241–254.

    Google Scholar 

  17. Maltsiniotis, G.: Le langage des espaces et des groupes quantiques, Comm. Math. Phys. 151(1993), 275–302.

    Google Scholar 

  18. Nagy, G. and Nica, A.: On the ‘quantum disc’ and a ‘non-commutative circle’, in: R. E. Curto, P. E. T. Jorgensen (eds), Algebraic Methods on Operator Theory, Birkhauser, Boston, 1994, pp. 276–290.

    Google Scholar 

  19. Rubenthaler, H.: Les paires duales dans les algèbres de Lie réductives, Astérisque 219(1994).

  20. Serre, J. P.: Complex Semisimple Algebras, Springer, Berlin, Heidelberg, New York, 1987.

    Google Scholar 

  21. Sinel'shchikov, S. and Vaksman, L.: Hidden symmetry of the differential calculus on the quantum matrix space, to appear in J. Phys. A.

  22. Soibelman, Ya. S. and Vaksman, L. L.: On some problems in the theory of quantum groups, in: A. M. Vershik (ed), Representation Theory and Dynamical Systems, Advances in Soviet Mathematics 9, American Mathematical Society, Providence, RI (1990), pp. 3–55.

    Google Scholar 

  23. Sinel'shchikov, S., Shklyarov, D. and Vaksman, L.: On function theory in the quantum disc: Integral representations. Preprint, 1997, q-alg.

  24. Vaksman, L. L. and Soibelman, Ya. S.: Algebra of functions on the quantum group SU(2), Funct. Anal. Appl. 22(1988), 170–181.

    Google Scholar 

  25. Woronowicz, S. L.: Compact matrix pseudogroups, Comm. Math. Phys. 111(1987), 613–665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinel’shchikov, S., Vaksman, L. On q-Analogues of Bounded Symmetric Domains and Dolbeault Complexes. Mathematical Physics, Analysis and Geometry 1, 75–100 (1998). https://doi.org/10.1023/A:1009704002239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009704002239

Navigation