Skip to main content
Log in

Supernomial Coefficients, Polynomial Identities and q-Series

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

q-Analogues of the coefficients of xa in the expansion ofΠ Nj=1 (1 + x + ⋯ + xj)Lj are proposed. Useful properties, such as recursion relations, symmetries and limiting theorems of the “q-supernomial coefficients” are derived, and a combinatorial interpretation using generalized Durfee dissection partitions is given. Polynomial identities of boson-fermion-type, based on the continued fraction expansion of p/k and involving the q-supernomial coefficients, are proven. These include polynomial analogues of the Andrews-Gordon identities. Our identities unify and extend many of the known boson-fermion identities for one-dimensional configuration sums of solvable lattice models, by introducing multiple finitization parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ahn, S.-W. Chung, and S.-H. Tye, “New parafermion, SU(2) coset and N = 2 superconformal field theories,” Nucl. Phys. B 365 (1991), 191–240.

    Google Scholar 

  2. G.E. Andrews, “A polynomial identity which implies the Rogers-Ramanujan identities,” Scripta Math. 28 (1970), 297–305.

    Google Scholar 

  3. G.E. Andrews, “Sieves in the theory of partitions,” Amer. J. Math. 94 (1972), 1214–1230.

    Google Scholar 

  4. G.E. Andrews, “An analytic generalization of the Rogers-Ramanujan identities for odd moduli,” Prod. Nat. Acad. Sci. USA 71 (1974), 4082–4085.

    Google Scholar 

  5. G.E. Andrews, “The theory of partitions,” Encyclopedia of Mathematics, Vol. 2, Addison-Wesley, Reading, 1976.

    Google Scholar 

  6. G.E. Andrews, “Partitions and Durfee dissection,” Amer. J. Math. 101 (1979), 735–742.

    Google Scholar 

  7. G.E. Andrews, “q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra,” CBMS Regional Conf. Ser. in Math. 66 AMS, Providence, 1985.

    Google Scholar 

  8. G.E. Andrews, “Schur's theorem, Capparelli's conjecture and q-trinomial coefficients,” Contemp. Math. 166 (1994), 141–154.

    Google Scholar 

  9. G.E. Andrews and R.J. Baxter, “Lattice gas generalization of the hard hexagon model. III. q-trinomial coefficients,” J. Stat. Phys. 47 (1987), 297–330.

    Google Scholar 

  10. G.E. Andrews, R.J. Baxter, D.M. Bressoud, W.H. Burge, P.J. Forrester, and G. Viennot, “Partitions with prescribed hook differences,” Europ. J. Combinatorics 8 (1987), 341–350.

    Google Scholar 

  11. G.E. Andrews, R.J. Baxter, and P.J. Forrester, “Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities,” J. Stat. Phys. 35 (1984), 193–266.

    Google Scholar 

  12. J. Bagger, D. Nemeschansky, and S. Yankielowicz, “Virasoro algebras with central charge c > 1,” Phys. Rev. Lett. 60 (1988), 389–392.

    Google Scholar 

  13. A. Berkovich, “Fermionic counting of RSOS states and Virasoro character formulas for the unitary minimal series M(v, v + 1): Exact results,” Nucl. Phys. B 431 (1994), 315–348.

    Google Scholar 

  14. A. Berkovich and B.M. McCoy, “Continued fractions and fermionic representations for characters of M(p, p') minimal models,” Lett. Math. Phys. 37 (1996), 49–66.

    Google Scholar 

  15. A. Berkovich and B.M. McCoy, “Generalizations of the Andrews-Bressoud identities for the N = 1 superconformal model SM(2, 4v),” Math. Comput. Modelling 26 (1997), 37–49.

    Google Scholar 

  16. A. Berkovich, B.M. McCoy, and W.P. Orrick, “Polynomial identities, indices, and duality for the N = 1 superconformal model SM(2, 4v),” J. Stat. Phys. 83 (1996), 795–837.

    Google Scholar 

  17. A. Berkovich, B.M. McCoy, and A. Schilling, “Rogers-Schur-Ramanujan type identities for the M(p, p') minimal models of conformal field theory,” Commun. Math. Phys. 191 (1998), 325–395.

    Google Scholar 

  18. A. Berkovich, B.M. McCoy, A. Schilling, and S.O. Warnaar, “Bailey flows and Bose-Fermi identities for the conformal coset models (A (1)1 )N × (A (1)1 )> N'/(A (1)1 ) N+N' ,” Nucl. Phys. B 499 [PM], (1997), 621–649.

    Google Scholar 

  19. D.M. Bressoud, “In the land of OZ,” in q-Series and partitions (D. Stanton, ed.), IMA Volume in Mathematics and its Applications, Springer, 1989, pp. 45–66.

  20. D.M. Bressoud, “Unimodality of Gaussian polynomials,” Discrete Math. 99 (1992), 17–24.

    Google Scholar 

  21. E. Date, M. Jimbo, A. Kuniba, T. Miwa, and M. Okado, “Exactly solvable SOS models: Local height probabilities and theta function identities,” Nucl. Phys. B 290 [FS20], (1987), 231–273.

    Google Scholar 

  22. E. Date, M. Jimbo, A. Kuniba, T. Miwa, and M. Okado, “Exactly solvable SOS sodels II: Proof of the star-triangle relation and combinatorial identities,” Adv. Stud. in Pure Math. 16 (1988), 17–122.

    Google Scholar 

  23. B.L. Feigin and D.B. Fuchs, “Verma modules over the Virasoro algebra,” Topology (Leningrad, 1982), 230–245, Lecture Notes in Math. 1060 (Springer, Berlin-New York, 1984).

    Google Scholar 

  24. B.L. Feigin and D.B. Fuchs, “Verma modules over the Virasoro algebra,” Funct. Anal. Appl. 17 (1983), 241–242.

    Google Scholar 

  25. O. Foda and Y.-H. Quano, “Polynomial identities of the Rogers-Ramanujan type,” Int. J. Mod. Phys. A 10 (1995), 2291–2315.

    Google Scholar 

  26. Foda and Y.-H. Quano, “Virasoro character identities from the Andrews-Bailey construction,” Int. J. Mod. Phys. A 12 (1997), 1651–1676.

    Google Scholar 

  27. P.J. Forrester and R.J. Baxter, “Further exact solutions of the eight-vertex SOS model and generalizations of the Rogers-Ramanujan identities,” J. Stat. Phys. 38 (1985), 435–472.

    Google Scholar 

  28. G. Gasper and M. Rahman, “Basic Hypergeometric Series,” Encyclopedia of Mathematics, Vol. 35, Cambridge University Press, 1990.

  29. M. Jimbo and T. Miwa, “Irreducible decomposition of fundamental modules for A (1)l and C (1)l , and Hecke modular forms,” Adv. Stud. in Pure Math. 4 (1984), 97–119.

    Google Scholar 

  30. V.G. Kac and D.H. Peterson, “Infinite-dimensional Lie algebras, theta functions and modular forms,” Adv. in Math. 53 (1984), 125–264.

    Google Scholar 

  31. D. Kastor, E. Martinec, and Z. Qiu, “Current algebra and conformal series,” Phys. Lett. B 200 (1988), 434–440.

    Google Scholar 

  32. R. Kedem, T.R. Klassen, B.M. McCoy, and E. Melzer, “Fermionic quasi-particle representations for characters of (G (1))1 × (G (1))2/(G (1))2,” Phys. Lett. B 304 (1993), 263–270.

    Google Scholar 

  33. R. Kedem, T.R. Klassen, B.M. McCoy, and E. Melzer, “Fermionic sum representations for conformal field theory characters,” Phys. Lett. B 307 (1993), 68–76.

    Google Scholar 

  34. A.N. Kirillov, “Dilogarithm identities,” Prog. Theor. Phys. Suppl. 118 (1995), 61–142.

    Google Scholar 

  35. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Crystal graphs and q-analogues of weight multiplicities for the root system An,” Lett. Math. Phys. 35 (1995), 359–374.

    Google Scholar 

  36. P.A. MacMahon, “Combinatory Analysis,” Vol. 2, Cambridge University Press, 1916.

  37. A. Nakayashiki and Y. Yamada, “Kostka polynomials and energy functions in solvable lattice models,” Selecta Math. (N.S.) 3 (1997), 547–599.

    Google Scholar 

  38. F. Ravanini, “An infinite class of new conformal field theories with extended algebras,” Mod. Phys. Lett. A 3 (1988), 397–412.

    Google Scholar 

  39. A. Schilling, “Polynomial fermionic forms for the branching functions of the rational coset conformal field theories \(\widehat{su}\)(2)M × \(\widehat{su}\)(2)N/\(\widehat{su}\)(2) M+N ,” Nucl. Phys. B 459 (1996), 393–436.

    Google Scholar 

  40. A. Schilling, “Multinomials and polynomial bosonic forms for the branching functions of the \(\widehat{su}\)(2)M × \(\widehat{su}\)(2)N/\(\widehat{su}\)(2) N+M conformal coset models,” Nucl. Phys. B 467 (1996), 247–271.

    Google Scholar 

  41. A. Schilling and S.O. Warnaar, “A higher-level Bailey lemma,” Int. J. Mod. Phys. B 11 (1997), 189–195.

    Google Scholar 

  42. A. Schilling and S.O. Warnaar, “A higher-level Bailey lemma: Proof and application,” This paper is to appear in Vol. 2, No. 3 of the Raman. journal. Hence the exact ref. details should be known at the editorial office.

  43. A. Schilling and S.O. Warnaar, “Inhomogeneous lattice paths, generalized Kostka polynomials and A n−1 supernomials,” preprint ITFA-03, math.QA/9802111. Submitted to Commun. Math. Phys.

  44. I.J. Schur, “Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche,” S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl. (1917), 302–321.

  45. M. Takahashi and M. Suzuki, “One-dimensional anisotropic Heisenberg model at finite temperatures,” Prog. Theor. Phys. 48 (1972), 2187–2209.

    Google Scholar 

  46. S.O. Warnaar, “Fermionic solution of the Andrews-Baxter-Forrester model. I. Unification of TBA and CTM methods,” J. Stat. Phys. 82 (1996), 657–685.

    Google Scholar 

  47. S.O. Warnaar, “Fermionic solution of the Andrews-Baxter-Forrester model. II. Proof of Melzer's polynomial identities,” J. Stat. Phys. 84 (1996), 49–83.

    Google Scholar 

  48. S.O. Warnaar, “The Andrews-Gordon identities and q-multinomial coefficients,” Commun. Math. Phys. 184 (1997), 203–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, A., Warnaar, S.O. Supernomial Coefficients, Polynomial Identities and q-Series. The Ramanujan Journal 2, 459–494 (1998). https://doi.org/10.1023/A:1009780810189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009780810189

Navigation