Skip to main content
Log in

Pole Dynamics for Elliptic Solutions of the Korteweg-deVries Equation

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

The real, nonsingular elliptic solutions of the Korteweg-de Vries equation are studied through the time dynamics of their poles in the complex plane. The dynamics of these poles is governed by a dynamical system with a constraint. This constraint is solvable for any finite number of poles located in the fundamental domain of the elliptic function, often in many different ways. Special consideration is given to those elliptic solutions that have a real nonsingular soliton limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, PA, 1981.

    Google Scholar 

  2. Airault, H., McKean, H. P., and Moser, J.: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30(1) (1977), 95–148.

    MATH  MathSciNet  ADS  Google Scholar 

  3. Belokolos, E. D., Bobenko, A. I., Enol'skii, V. Z., Its, A. R., and Matveev, V. B.: Algebro-Geometric Approach to Nonlinear Integrable Problems, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1994.

    Google Scholar 

  4. Chudnovs'ki, D. V. and Chudnovs'ki, G. V.: Pole expansions of nonlinear partial differentialequations, Nuovo Cimento B (11) 40(2) (1977), 339–353.

    MathSciNet  Google Scholar 

  5. Conway, J. B.: Functions of One Complex Variable, 2nd edn,Springer-Verlag, New York, 1978.

    Google Scholar 

  6. Dubrovin, B. A.: Theta functions and nonlinear equations, Russian Math. Surveys 36(2) (1981), 11–80.

    Article  MATH  MathSciNet  Google Scholar 

  7. Dubrovin, B. A. and Novikov, S. P.: Periodic and conditionally periodic analogs of the manysolitonsolutions of the Korteweg-de Vries equation, Soviet Phys. JETP 40 (1975), 1058–1063.

    MathSciNet  ADS  Google Scholar 

  8. Ènols'kii, V. Z.: On solutions in elliptic functions of integrable nonlinear equations associatedwith two-zone Lamé potentials, Soviet Math. Dokl. 30 (1984), 394–397.

    Google Scholar 

  9. Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M.: Method for solving theKorteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097.

    Google Scholar 

  10. Gesztesy, F. and Weikard, R.: On Picard potentials, Differential Integral Equations 8(6) (1995), 1453–1476.

    MATH  MathSciNet  Google Scholar 

  11. Gesztesy, F. and Weikard, R.: Picard potentials and Hill's equation on a torus, Acta Math. 176(1) (1996), 73–107.

    MATH  MathSciNet  Google Scholar 

  12. Gradshteyn, I. S. and Ryzhik, I. M.: Table of Integrals, Series, and Products, 5th edn, Translation edited and with a preface by Alan Jeffrey, Academic Press, Boston, MA, 1994.

    Google Scholar 

  13. Ince, E. L.: Further investigations into the periodic Lamé functions, Proc. Roy. Soc. Edinburgh 60 (1940), 83–99.

    MATH  MathSciNet  Google Scholar 

  14. Its, A. R. and Matveev, V. B.: Schrödinger operators with the finite-band spectrum and the N soliton solutions of the Korteweg-de Vries equation, Theoret. and Math. Phys. 23(1) (1976),343–355.

    Article  MathSciNet  Google Scholar 

  15. Kruskal, M. D.: The Korteweg-de Vries equation and related evolution equations, Lectures in Appl. Math. 15, Amer. Math. Soc. Providence, 1974, pp. 61-83.

  16. Lax, P. D.: Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490.

    MATH  MathSciNet  Google Scholar 

  17. Thickstun, W. R.: A system of particles equivalent to solitons, J. Math. Anal. Appl. 55(2) (1976), 335–346.

    Article  MATH  MathSciNet  Google Scholar 

  18. Treibich, A. and Verdier, J.-L.: Revêtements tangentiels et sommes de 4 nombres triangulaires, C.R. Acad. Sci. Paris Sér. I Math. 311(1) (1990), 51–54.

    MATH  MathSciNet  Google Scholar 

  19. Treibich, A. and Verdier, J.-L.: Solitons elliptiques, In: The Grothendieck Festschrift, Vol. III, With an appendix by J. Oesterlé, Birkhäuser, Boston, 1990, pp. 437–480.

    Google Scholar 

  20. Treibich, A. and Verdier, J.-L.: Revêtements exceptionnels et sommes de 4 nombres triangulaires, Duke Math. J. 68(2) (1992), 217–236.

    Article  MATH  MathSciNet  Google Scholar 

  21. Verdier, J.-L.: New elliptic solitons, In: Algebraic Analysis, Vol. II, Academic Press, Boston, MA, 1988, pp. 901–910.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deconinck, B., Segur, H. Pole Dynamics for Elliptic Solutions of the Korteweg-deVries Equation. Mathematical Physics, Analysis and Geometry 3, 49–74 (2000). https://doi.org/10.1023/A:1009830803696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009830803696

Navigation