Skip to main content
Log in

Space-Time Foam Dense Singularities and de Rham Cohomology

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In an earlier paper of the authors, it was shown that the sheaf theoretically based recently developed abstract differential geometry of the first author can, in an easy and natural manner, incorporate singularities on arbitrary closed nowhere dense sets in Euclidean spaces, singularities which therefore can have arbitrary large positive Lebesgue measure. As also shown, one can construct in such a singular context a de Rham cohomology, as well as a short exponential sequence, both of which are fundamental in differential geometry. In this paper, these results are significantly strengthened, motivated by the so-called space-time foam structures in general relativity, where singularities can be dense. In fact, this time one can deal with singularities on arbitrary sets, provided that their complementaries are dense, as well. In particular, the cardinal of the set of singularities can be larger than that of the nonsingular points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, J. L. and Slomson, A. B.: Models and Ultraproducts, An Introduction, North-Holland, Amsterdam, 1969.

    Google Scholar 

  • Biagioni, H. A.: A Nonlinear Theory of Generalized Functions, Lecture Notes in Math. 1421, Springer, New York, 1990.

    Google Scholar 

  • Berger, M. S.: Nonlinearity and Functional Analysis, Academic Press, New York, 1977.

    Google Scholar 

  • Blattner, R. J.: On geometric quantization, In: S. I. Anderson and H.-D. Doebner (eds), Nonlinear Partial Differential Operators and Quantum Procedures, Lecture Notes in Math. 1037, Springer, New York, 1983, pp. 209-241.

    Google Scholar 

  • Bredon, G. E.: Sheaf Theory, Springer, New York, 1996.

    Google Scholar 

  • Brylinski, J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization, Birkhäuser, Boston, 1993.

    Google Scholar 

  • Colombeau, J.-F.: New Generalized Functions and Multiplication of Distributions, Math. Stud. 84, North-Holland, Amsterdam, 1984.

    Google Scholar 

  • Dyson, F. J.: Missed opportunities, Bull. Amer. Math. Soc. 78(5) (1972), 635-652.

    Google Scholar 

  • Geroch, R. [1]: What is a singularity in General Relativity?, Ann. Phys. 48 (1968), 526-540.

    Google Scholar 

  • Geroch, R. [2]: Einstein algebras, Comm. Math. Phys. 26 (1972), 271-275.

    Google Scholar 

  • Geroch, R. and Traschen, J.: Strings and other distributional sources in general relativity, Phys. Rev. D 36(4) (1987), 1017-1031.

    Google Scholar 

  • Gillman, L. and Jerison, M.: Rings of Continuous Functions, Van Nostrand, New York, 1960.

    Google Scholar 

  • Gruszczak, J. and Heller, M.: Differential structure of space-time and its prolongations to singular boundaries, Internat. J. Theoret. Phys. 32(4) (1993), 625-648.

    Google Scholar 

  • Hawking, S. and Penrose, R.: The Nature of Space and Time, Princeton Univ. Press, 1996.

  • Heller, M. [1]: Algebraic foundations of the theory of differential spaces, Demonstratio Math. 24 (1991), 349-364.

    Google Scholar 

  • Heller, M. [2]: Einstein algebras and general relativity, Internat. J. Theoret. Phys. 31 (1992), 277-288.

    Google Scholar 

  • Heller, M. [3]: Theoretical Foundations of Cosmology, Introduction to the Global Structure of Space-Time, World Scientific, Singapore, 1992.

    Google Scholar 

  • Heller, M. [4]: Geometry of transition to quantum gravity regime, Acta Phys. Polonica B 24 (1993), 911-926.

    Google Scholar 

  • Heller, M., Multarzynski, P. and Sasin, W.: The algebraic approach to space-time geometry, Acta Cosmologica XVI (1989), 53-85.

    Google Scholar 

  • Heller, M. and Sasin, W. [1]: Generalized Friedman's equation and its singularities, Acta Cosmologica XIX (1993), 23-33.

    Google Scholar 

  • Heller, M. and Sasin, W. [2]: Sheaves of Einstein algebras, Internat. J. Theoret. Phys. 34(3) (1995), 387-398.

    Google Scholar 

  • Heller, M. and Sasin, W. [3]: Structured spaces and their application to relativistic physics, J. Math. Phys. 36 (1995), 3644-3662.

    Google Scholar 

  • Kahn, D. W.: Introduction to Global Analysis, Academic Press, New York, 1980.

    Google Scholar 

  • Kaneko, A.: Introduction to Hyperfunctions, Kluwer Acad. Publ., Dordrecht, 1988.

    Google Scholar 

  • Kirillov, A. A. [1]: Elements of the Theory of Representations, Springer, New York, 1976.

    Google Scholar 

  • Kirillov, A. A. [2]: Geometric quantization, In: V. I. Arnold and S. P. Novikov (eds), Dynamical Systems IV. Symplectic Geometry and its Applications, Springer, New York, 1990, pp. 137-172.

    Google Scholar 

  • Kriegl, A. and Michor, P. W.: The Convenient Setting of Global Analysis, Math. SurveysMonographs 53, Amer. Math. Soc., 1997.

  • Loš, J.: On the categoricity in power of elementary deductive systems and some related problems, Colloq. Math. 3 (1954), 58-62.

    Google Scholar 

  • Mallios, A. [1]: Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry, Vols. I (Chapts. 1-5), II (Chapts. 6-11), Kluwer Acad. Publ., Dordrecht, 1998.

    Google Scholar 

  • Mallios, A. [2]: On an axiomatic treatment of differential geometry via vector sheaves. Applications, Math. Japonica (Intern. Plaza) 48 (1998), 93-184 (invited paper).

    Google Scholar 

  • Mallios, A. [3]: The de Rham-Kähler complex of the Gel'fand sheaf of a topological algebra, J. Math. Anal. Appl. 175 (1993), 143-168.

    Google Scholar 

  • Mallios, A. [4]: On an abstract form of Weil's integrality theorem, Note Mat. 12 (1992), 167-202 (invited paper).

    Google Scholar 

  • Mallios, A. [5]: On an axiomatic approach to geometric prequantization: A classification scheme à la Kostant-Souriau-Kirillov, J. Math. Sci. 95 (1999), 2648-2668 (invited paper).

    Google Scholar 

  • Mallios, A. [6]: Abstract differential geometry, general relativity, and singularities (invited paper, to appear).

  • Mallios, A. [7]: Gauge Theories in Terms of Abstract Differential Geometry. Variational Principles and Lagrangian Formalism (book in preparation).

  • Mallios, A. and Rosinger, E. E.: Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology, Acta Appl. Math. 55 (1999), 231-250.

    Google Scholar 

  • Michor, P. W.: Gauge Theory for Fiber Bundles, Monographs Textbooks Phys. Sci., Bibliopolis, Napoli, 1991.

    Google Scholar 

  • Mostow, M. A.: The differentiable space structures of Milnor classifying spaces, simplicial complexes, and geometric realizations, J. Differential Geom. 14 (1979), 255-293.

    Google Scholar 

  • Munkres, J. R.: Topology, A First Course, Prentice-Hall, New Jersey, 1975.

    Google Scholar 

  • Narasimhan, R.: Analysis on Real and Complex Manifolds, Masson, Paris, 1973.

    Google Scholar 

  • Nel, L. D.: Differential calculus founded on an isomorphism, Appl. Categorial Structures 1 (1993), 51-57.

    Google Scholar 

  • Oberguggenberger, M. B. and Rosinger, E. E.: Solution of Continuous Nonlinear PDEs through Order Completion, Math. Stud. 181, North-Holland, Amsterdam, 1994; see also review MR 95k:35002.

    Google Scholar 

  • Oxtoby, J. C.: Measure and Category, Springer, New York, 1971.

    Google Scholar 

  • Penrose, P.: Techniques of Diferential Topology in Relativity, SIAM, Philadelphia, 1972.

    Google Scholar 

  • Penrose, R., Shimony, A., Cartwright, N. and Hawking, S.: The Large, the Small and the Human Mind, Cambridge Univ. Press, 1997.

  • Rosinger, E. E. [1]: Embedding of the D distributions into pseudo-topological algebras, Stud. Cerc. Math. 18(5) (1966), 687-729.

    Google Scholar 

  • Rosinger, E. E. [2]: Pseudotopological spaces, the embedding of the D distributions into algebras, Stud. Cerc. Math. 20(4) (1968), 553-582.

    Google Scholar 

  • Rosinger, E. E. [3]: Division of distributions, Pacific J. Math. 66(1) (1976), 257-263.

    Google Scholar 

  • Rosinger, E. E. [4]: Nonsymmetric Dirac distributions in scattering theory, In: Lecture Notes in Math. 564, Springer, New York, 1976, pp. 391-399.

    Google Scholar 

  • Rosinger, E. E. [5]: Distributions and Nonlinear Partial Differential Equations, Lectures Notes in Math. 684, Springer, New York, 1978.

    Google Scholar 

  • Rosinger, E. E. [6]: Nonlinear Partial Differential Equations, Sequential and Weak Solutions, Math. Stud. 44, North-Holland, Amsterdam, 1980.

    Google Scholar 

  • Rosinger, E. E. [7]: Generalized Solutions of Nonlinear Partial Differential Equations, Math. Stud. 146, North-Holland, Amsterdam, 1987.

    Google Scholar 

  • Rosinger, E. E. [8]: Nonlinear Partial Differential Equations, an Algebraic View of Generalized Solutions, Math. Stud. 164, North-Holland, Amsterdam, 1990.

    Google Scholar 

  • Rosinger, E. E. [9]: Global version of the Cauchy-Kovalevskaia theorem for nonlinear PDEs, Acta Appl. Math. 21 (1990), 331-343.

    Google Scholar 

  • Rosinger, E. E. [10]: Characterization for the solvability of nonlinear PDEs, Trans. Amer. Math. Soc. 330 (1992), 203-225; see also reviews MR 92d:46098, Zbl. Math. 717 35001, MR 92d:46097, Bull. AMS vol. 20, no. 1, Jan. 1989, 96-101, MR 89g:35001.

    Google Scholar 

  • Rosinger, E. E. [11]: Nonprojectable Lie Symmetries of nonlinear PDEs and a negative solution to Hilbert's fifth problem, In: N. H. Ibragimov and F. M. Mahomed (eds), Modern Group Analysis VI, Proceedings of the International Conference in the New South Africa, Johannesburg, January 1996, New Age Inter. Publ., New Delhi, 1997, pp. 21-30.

    Google Scholar 

  • Rosinger, E. E. [12]: Parametric Lie Group Actions on Global Generalised Solutions of Nonlinear PDEs, Including a Solution to Hilbert's Fifth Problem, Kluwer Acad. Publ., Boston, 1998.

    Google Scholar 

  • Rosinger, E. E. [13]: Arbitrary global Lie group actions on generalized solutions of nonlinear PDEs and an answer to Hilbert's fifth problem, In: M. Grosser, G. Hörmann, M. Kunzinger and M. B. Oberguggenberger (eds), Nonlinear Theory of Generalized Functions, Research Notes in Math., Chapman and Hall/CRC, London, New York, 1999, pp. 251-265.

    Google Scholar 

  • Rosinger, E. E. [14]: Space-time foam differential algebras of generalized functions and a global Cauchy-Kovalevskaia theorem, Private communication, Vancouver, 1998.

  • Rosinger, E. E. [15]: Space-time foam differential algebras of generalized functions and a global Cauchy-Kovalevskaia theorem (revised), Technical Report UPWT 99/8, Univ. Pretoria, May 1999.

  • Rosinger, E. E. [16]: Differential algebras with dense singularities on manifolds, Technical Report UPWT 99/9, Univ. Pretoria, June 1999.

  • Rosinger, E. E. [17]: Dense singularities and nonlinear PDEs (to appear).

  • Rosinger, E. E. and Rudolph, M.: Group invariance of global generalised solutions of nonlinear PDEs: A Dedekind order completion method, Lie Groups Appl. 1(1) (July-August 1994), 203-215.

    Google Scholar 

  • Rosinger, E. E. and Walus, E. Y. [1]: Group invariance of generalized solutions obtained through the algebraic method, Nonlinearity 7 (1994), 837-859.

    Google Scholar 

  • Rosinger, E. E. and Walus, E. Y. [2]: Group invariance of global generalised solutions of nonlinear PDEs in nowhere dense algebras, Lie Groups Appl. 1(1) (July-August 1994), 216-225.

    Google Scholar 

  • Rudin, W.: Principles of Mathematical Analysis, McGraw-Hill, New York, 1964.

    Google Scholar 

  • Sasin, W. [1]: The de Rham cohomology of differential spaces, Demonstratio Math. XXII(1) (1989), 249-270.

    Google Scholar 

  • Sasin, W. [2]: Differential spaces and singularities in differential space-time, Demonstratio Math. XXIV(3-4) (1991), 601-634.

    Google Scholar 

  • Scott, A.: Nonlinear Science, Emergence & Dynamics of Coherent Structures, Oxford Univ. Press, 1999.

  • Sikorski, R.: Introduction to Differential Geometry (in Polish), Polish Scientific Publishers, Warsaw, 1972.

    Google Scholar 

  • Simms, D. J. and Woodhouse, N. M. J.: Lectures on Geometric Quantization, Lecture Notes in Phys. 53, Springer, New York, 1976.

    Google Scholar 

  • Souriau, J.-M. [1]: Structures des Systè mes Dynamiques, Dunod, Paris, 1970.

    Google Scholar 

  • Souriau, J.-M. [2]: Groupes différentiels, In: Differential Geometric Methods in Mathematical Physics, Lecture Notes in Math. 863, Springer, New York, 1980, pp. 91-128.

    Google Scholar 

  • Vassiliou, E. [1]: On Mallios A-connections as connections on principal sheaves, Note Mat. 14 (1994), 237-249.

    Google Scholar 

  • Vassiliou, E. [2]: Connections on principal sheaves, In: J. Szenthe (ed.), New Developments in Differential Geometry, Budapest, 1999, Kluwer Acad. Publ., 1999, pp. 459-483.

  • Vassiliou, E. [3]: Topological algebras and abstract differential geometry, J. Math. Sci. 95 (1999), 2669-2680.

    Google Scholar 

  • Vassiliou, E. [4]: Flat principal sheaves, Preprint Univ. of Athens, Greece.

  • von Westenholz, C.: Differential Forms in Mathematical Physics, North-Holland, Amsterdam, 1981.

    Google Scholar 

  • Walker, R. C.: The Stone-Čech Compatification, Springer, Heidelberg, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallios, A., Rosinger, E.E. Space-Time Foam Dense Singularities and de Rham Cohomology. Acta Applicandae Mathematicae 67, 59–89 (2001). https://doi.org/10.1023/A:1010663502915

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010663502915

Navigation