Skip to main content
Log in

Multiplicative Invariants and Semigroup Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let G be a finite group acting by automorphism on a lattice A, and hence on the group algebra S=k[A]. The algebra of G-invariants in S is called an algebra of multiplicative invariants. We present an explicit version of a result of Farkas stating that multiplicative invariants of finite reflection groups are semigroup algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourbaki, N.: Groupes et algèbres de Lie, chap. 4-6, Hermann, Paris, 1968.

    Google Scholar 

  2. Bruns, W. and Herzog, J.: Cohen-Macaulay Rings, Cambridge Univ. Press, Cambridge, 1993.

    Google Scholar 

  3. Farkas, D. R.: Multiplicative invariants, Enseign. Math. 30 (1984), 141-157.

    Google Scholar 

  4. Farkas, D. R.: Reflection groups and multiplicative invariants, RockyMt. J. 16 (1986), 215-222.

    Google Scholar 

  5. Farkas, D. R.: Toward multiplicative invariant theory, In: S. Montgomery (ed.), Group Actions on Rings, Contemp. Math. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 9-80.

    Google Scholar 

  6. Gilmer, R.: Commutative Semigroup Rings, Chicago Lectures in Math., Univ. Chicago Press, Chicago, 1984.

    Google Scholar 

  7. Gubeladze, J.: Anderson's conjecture and the maximal monoid class over which projective modules are free, Math. USSR Sb. 63 (1989), 165-180.

    Google Scholar 

  8. Gubeladze, J.: The elementary action on unimodular rows over a monoid ring, J. Algebra 148 (1992), 135-161.

    Google Scholar 

  9. Hochster, M.: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972), 318-337.

    Google Scholar 

  10. Humphreys, J. E.: Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990.

  11. Lemire, N.: Multiplicative Invariants, PhD thesis, University of Alberta, Edmonton, 1998.

    Google Scholar 

  12. Lorenz, M.: Class groups of multiplicative invariants, J. Algebra 177 (1995), 242-254.

    Google Scholar 

  13. Lorenz, M.: Regularity of multiplicative invariants, Comm. Algebra 24 (1996), 1051-1055.

    Google Scholar 

  14. Lorenz, M.: Picard groups of multiplicative invariants, Comment. Math. Helv. 72 (1997), 389-399.

    Google Scholar 

  15. Schönert, M., et al.: GAP-Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, fifth edn, 1995; available from http://www-gap.dcs.st-and.ac.uk/~gap/.

  16. Steinberg, R.: On a theorem of Pittie, Topology 14 (1975), 173-177.

    Google Scholar 

  17. Sturmfels, B.: Gröbner Bases and Convex Polytopes, Univ. Lecture Ser. 8, Amer.Math. Soc., Providence, RI, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, M. Multiplicative Invariants and Semigroup Algebras. Algebras and Representation Theory 4, 293–304 (2001). https://doi.org/10.1023/A:1011415025465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011415025465

Navigation