Skip to main content
Log in

Adjoint Equation-Based Methods for Control Problems in Incompressible, Viscous Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A review of adjoint equation-based methodologies for viscous,incompressible flow control and optimization problems is given and illustrated by a drag minimization example. A number of approaches to ameliorating the high storage and CPU costs associated with straightforward implementations of adjoint equation based methodologies are discussed. Other issues, including the relative merits of the differentiate-then-discretize and discretize-then-differentiate approaches to deriving discrete adjoint equations, the incorporation of side constraints into adjoint equation-based methodologies, and inaccuracies that occur due to differentiations at the boundary, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abergel, F. and Temam, R., On some control problems in fluid mechanics. Theo. Comput. Fluid Dyn. 1 (1990)303–326.

    Article  MATH  Google Scholar 

  2. Berggren, M., Numerical solution of a flow control problem: Vorticity reduction by dynamic boundary action. SIAM J. Sci. Comput. 19 ( 1998)829–860.

    Article  MATH  MathSciNet  Google Scholar 

  3. Berggren, M., Glowinski, R. and Lions, J.-L., A computational approach to controllability issues for flow-related models, Part I. Internat. J. Comput. Fluid Dyn. 6 (1996)237–252, 253–274.

    ADS  Google Scholar 

  4. Berggren, M. and Heikenschloss, M., Parallel solution of optimal-control problems by timedomain decomposition. In: Bristeau, M. et al. (eds), Computational Science for the 21st Century. Wiley, New York (1997)pp. 102–112.

    Google Scholar 

  5. Bewley, T. and Moin, P., Optimal and robust approaches for linear and nonlinear regulation problems in fluid mechanics. AIAA Paper 97–1872, AIAA, New York (1997).

    Google Scholar 

  6. Bewley, T., Temam, R. and Ziane,M., A robust framework for robust control in fluid mechanics. Report, Center for Turbulence Research, Stanford University, Stanford (1998).

    Google Scholar 

  7. Bischof, C., Carle, A., Khademi, P. and Mauer, A., ADIFOR 2.0: Automatic differentiation of Fortran 77 programs. IEEE Comput. Sci. Engrg. 3 (1996)18–32.

    Article  Google Scholar 

  8. Burkardt, J. and Gunzburger, M., Sensitivity discrepancy for geometric parameters. In: CFD for Design and Optimization. ASME, New York (1995)pp. 9–15.

    Google Scholar 

  9. Burkardt, J., Gunzburger, M. and Peterson, J., Discretization of cost and sensitivities in shape optimization. In: Bowers, K. and Lund, J. (eds), Computation and Control IV. Birkhäuser, Boston (1995)pp. 43–56.

    Google Scholar 

  10. Burns, J. and King, B., A reduced basis approach to the design of low order feedback controllers for nonlinear continuous systems. Preprint, Interdiscilpinary Center for Applied Mathematics, Virginia Tech, Blacksburg.

  11. Ciarlet, P., Introduction to Numerical Linear Algebra and Optmisation. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  12. Dennis, J. and Schnabel, R., Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ (1983).

    MATH  Google Scholar 

  13. Desai, M. and Ito, K., Optimal control of Navier-Stokes equations. SIAM J. Control Optim. 32 (1994)1428–1446.

    Article  MATH  MathSciNet  Google Scholar 

  14. Fursikov, A., On some control problems and results related to the unique solution of mixed problems by the three-dimensional Navier-Stokes and Euler equations. Dokl. Akad. Nauk SSSR 252 (1980)1066–1070.

    MATH  MathSciNet  ADS  Google Scholar 

  15. Fursikov, A., Control problems and results on the unique solution of mixed problems by the three-dimensional Navier-Stokes and Euler equations. Math. Sbornik 115 (1981)281–306.

    MATH  MathSciNet  Google Scholar 

  16. Fursikov, A., Gunzburger, M. and Hou, L., Boundary value problems and optimal boundary control for the Navier-Stokes system: The two-dimensional case. SIAM J. Control Optim. 36 (1998)852–894.

    Article  MATH  MathSciNet  Google Scholar 

  17. Gillies, E., Low-dimensional control of the circular cylinder wake. Part 1. Strategy. Part 2. Control of prototype wake. J. Fluid Mech., to appear.

  18. Griewank, A., On automatic differentiation. In: Mathematical Programming: Recent Developments and Applications, Kluwer Academic Publishers, Dordrecht (1989)pp. 83–108.

    Google Scholar 

  19. Gunzburger, M., Sensitivities in computational methods for optimal flow control. In:Borggaard, J., Burns, J., Cliff, E. and Schreck, S. (eds), Computational Methods for Optimal Design and Control. Birkhäuser, Boston (1998)pp. 197–236.

    Google Scholar 

  20. Gunzburger, M. and Hou, L., Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses. SIAM J. Numer. Anal. 29 (1992)390–424.

    Article  MATH  MathSciNet  Google Scholar 

  21. Gunzburger, M., Hou, L. and Svobodny, T., Numerical approximation of an optimal control problem associated with the Navier-Stokes equations. Appl. Math. Lett. 2 (1989)29–31.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Gunzburger, M., Hou, L. and Svobodny, T., Analysis and finite element approximations of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls. Math. Comp. 57 (1991)123–151.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Gunzburger, M., Hou, L. and Svobodny, T., Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. Math. Model. Numerer. Anal. 25 (1991)771–748.

    MathSciNet  Google Scholar 

  24. Gunzburger, M., Hou, L. and Svobodny, T., Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30 (1992)167–181.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Gunzburger, M. and Manservisi, S., The velocity tracking problem for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. 37 (1999)1913–1945.

    Article  MATH  MathSciNet  Google Scholar 

  26. Gunzburger, M. and Manservisi, S., Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal., to appear.

  27. Gunzburger, M. and Manservisi, S., The velocity tracking problem for Navier-Stokes flows with boundary control. SIAM J. Control Optim., to appear.

  28. Gunzburger, M. and Peterson, J., The reduced basis method in control problems. In: Bowers, K. and J. Lund, J. (eds), Computation and Control III. Birkäuser, Boston (1993)pp. 211–218.

    Google Scholar 

  29. Hinze, M. and Kunish, K., Control strategies for fluid flows-Optimal versus suboptimal control. Preprint 573/1998, Technische Universität, Germany (1998).

    Google Scholar 

  30. Hou, L. and Yan, Y., Dynamics for controlled Navier-Stokes systems with distributed controls. SIAM J. Control Optim., to appear.

  31. Hovland, P., Mohammadi, B. and Bischof, C., Automatic differentiation and Navier-Stokes computations. In: Borggaard, J., Burns, J., Cliff, E. and Schreck, S. (eds), Computational Methods for Optimal Design and Control. Birkhäuser, Boston (1998)pp. 265–284.

    Google Scholar 

  32. Ito, K. and Ravindran, S., A reduced order method for simulation and control of fluid flows. Preprint, Department of Mathematics, North Carolina State University, Raleigh.

  33. Ito, K. and Schroeter, J., Reduced order feedback synthesis for viscous incompressible flows. Preprint, Department of Mathematics, North Carolina State University, Raleigh.

  34. Joslin, R., Gunzburger, M., Nicolaides, R., Erlebacher, G. and Hussaini, M., A methodology for the automated optimal control of flows including transitional flows. AIAA J. 35 (1997)816–824.

    Article  MATH  Google Scholar 

  35. Koumoutsakos, P., Active control of vortex-wall interactions. Phys. Fluids 9 (1997)3808–3816.

    Article  ADS  Google Scholar 

  36. Noor, A. and Peters, J., Tracing post-limit-point paths with reduced basis technique. Comput. Meth. Appl. Mech. Engrg. 28 (1981)217–240.

    Article  MATH  Google Scholar 

  37. Peterson, J., A reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10 (1989)777–786.

    Article  MATH  Google Scholar 

  38. Park, H. and Kim, O., Reduction in modes for the control of viscous flows. Preprint.

  39. Protas, B. and Stuczek, A., Theoretical and computational study of the wake control problem. Preprint, Department of Aerodynamics, Warsaw University of Technology, Warsaw (1998).

    Google Scholar 

  40. Ravindran, S., Proper orthogonal decomposition in optimal control of fluids. Preprint, Department of Mathematics, North Carolina State University, Raleigh.

  41. Rostaing, N., Dalmas, S. and Galligo, A., Automatic differentiation in Odysee. Tellus 45a (1993)558–568.

    ADS  Google Scholar 

  42. Sritharan, S., Dynamic programming of Navier-Stokes equations. Systems Control Lett. 16 (1991)229–307.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunzburger, M. Adjoint Equation-Based Methods for Control Problems in Incompressible, Viscous Flows. Flow, Turbulence and Combustion 65, 249–272 (2000). https://doi.org/10.1023/A:1011455900396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011455900396

Navigation