Skip to main content
Log in

Graphs Between the Elliptic and Parabolic Harnack Inequalities

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We present graphs that satisfy the uniform elliptic Harnack inequality, for harmonic functions, but not the stronger parabolic one, for solutions of the discrete heat equation. It is known that the parabolic Harnack inequality is equivalent to the conjunction of a volume regularity and a L 2 Poincaré inequality. The first example of graph satisfying the elliptic but not the parabolic Harnack inequality is due to M. Barlow and R. Bass. It satisfies the volume regularity and not the Poincaré inequality. We construct another example that does not satisfy the volume regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, M. T.: 'Diffusions on fractals', in Lectures on Probability Theory and Statistics. Ecole d'été de probabilités de Saint-Flour 1995, Lecture Notes in Math. 1690, Springer, Berlin, 1998, pp. 1-121.

    Google Scholar 

  2. Barlow, M. T. and Bass, R. F.: 'Brownian motion and harmonic analysis on Sierpinski carpets', Canad. J. Math. 51 (1999), 673-744.

    Google Scholar 

  3. Barlow, M. T. and Bass, R. F.: 'Random walks on graphical Sierpinski carpets', in Random Walks and Discrete Potential Theory, Cambridge Univ. Press, 1999.

  4. Barlow, M. T. and Perkins, E. A.: 'Brownian motion on the Sierpinski gasket', Probab. Theory Releted Fields 79 (1988), 543-623.

    Google Scholar 

  5. Bourdon, M. and Pajot, H.: 'Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings', Proc. Amer. Math. Soc. 127 (1999), 2315-2324.

    Google Scholar 

  6. Cheng, S. and Yau, S. T.: 'Differential equations on Riemannian manifolds and their geometric applications', Comm. Pure Appl. Math. 28 (1975), 333-354.

    Google Scholar 

  7. Coulhon, T. and Saloff-Coste, L.: 'Isopérimétrie sur les groupes et les variétés', Rev. Mat. Iberoamericana 9 (1993), 293-314.

    Google Scholar 

  8. Delmotte, T.: 'Inégalité de Harnack elliptique sur les graphes', Coll. Math. 72(1) (1997), 19-37.

    Google Scholar 

  9. Delmotte, T.: 'Parabolic Harnack inequality and estimates of Markov chains on graphs', Rev. Mat. Iberoamericana 15(1) (1999), 181-232.

    Google Scholar 

  10. Delmotte, T.: Versions discrètes de l'inégalité de Harnack, Thèse, université de Cergy-Pontoise, 1997.

  11. Diaconis, P. and Stroock, D.: 'Geometric bounds for eigenvalues of Markov chains', Ann. Appl. Probab. 1 (1991), 39-61.

    Google Scholar 

  12. Doyle, P. and Snell, J. L.: Random Walks and Electric Networks, Math. Assoc. Amer., Washington DC, 1984.

    Google Scholar 

  13. Grigor'yan, A.: 'The heat equation on noncompact Riemannian manifolds', Mat. Sb. 182(1) (1991), 55-87 (Russian). Math. USSR-Sb. 72 (1992), 47-77 (English translation).

    Google Scholar 

  14. Grigor'yan, A. and Saloff-Coste, L.: 'Heat kernel on connected sums of Riemannian manifolds', Math. Res. Lett. 6 (1999), 307-321.

    Google Scholar 

  15. Grigor'yan, A. and Telcs, A.: 'Sub-Gaussian estimates of heat kernels on infinite graphs', Preprint.

  16. Heinonen, J. and Semmes, S.: 'Thirty-three yes or no questions about mappings, measures, and metrics', Conform. Geom. Dyn. 1(1) (1997), 1-12.

    Google Scholar 

  17. Holopainen, I. and Soardi, P. M.: 'A strong Liouville theorem for p-harmonic functions on graphs', Ann. Acad. Sci. Fenn. Math. 22 (1997), 205-226.

    Google Scholar 

  18. Jones, O. D.: 'Transition probabilities for the simple random walk on the Sierpinski graph', Stochastic Process Appl. 61 (1996), 45-69.

    Google Scholar 

  19. Kesten, H.: 'Subdiffusive behavior of random walk on a random cluster', Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), 425-487.

    Google Scholar 

  20. Laakso, T. J.: 'Ahlfors Q-regular spaces with arbitrary Q admitting weak Poincaré inequalities', Preprint.

  21. Li, P. and Yau, S. T.: 'On the parabolic kernel of the Schrödinger operator', Acta Math. 156 (1986), 153-201.

    Google Scholar 

  22. Mandelbrot, B. B.: The Fractal Geometry of Nature, W. H. Freeman, San Francisco, 1982.

    Google Scholar 

  23. Merkov, A. B.: 'Second-order elliptic equations on graphs', Math. USSR-Sb. 55 (1986), 493-509.

    Google Scholar 

  24. Moser, J.: 'On Harnack's theorem for elliptic differential equations', Comm. Pure Appl. Math. 14 (1961), 577-591.

    Google Scholar 

  25. Moser, J.: 'A Harnack inequality for parabolic differential equations', Comm. Pure Appl. Math. 17 (1964), 101-134. Correction in 20 (1967), 231-236.

    Google Scholar 

  26. Moser, J.: 'On a pointwise estimate for parabolic differential equations', Comm. Pure Appl. Math. 24 (1971), 727-740.

    Google Scholar 

  27. Rigoli, M., Salvatori, M. and Vignati, M.: 'Geometry of graphs and manifolds', Rend. Circ. Mat. Palermo 49 (1997), 243-268.

    Google Scholar 

  28. Saloff-Coste, L.: 'A note on Poincaré, Sobolev and Harnack inequalities', Internat. Math. Res. Notices 2 (1992), 27-38.

    Google Scholar 

  29. Saloff-Coste, L.: 'Parabolic Harnack inequality for divergence form second order differential operators', Potential Anal. 4(4) (1995), 429-467.

    Google Scholar 

  30. Sierpinski, W.: 'Sur une courbe dont tout point est un point de ramification', C.R. Acad. Sci. Paris 162 (1916), 629-632.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delmotte, T. Graphs Between the Elliptic and Parabolic Harnack Inequalities. Potential Analysis 16, 151–168 (2002). https://doi.org/10.1023/A:1012632229879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012632229879

Navigation