Skip to main content
Log in

Asymptotic Behavior of Positive Solutions of Random and Stochastic Parabolic Equations of Fisher and Kolmogorov Types

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior as t→∞ of positive solutions for random and stochastic parabolic equations of Fisher and Kolmogorov type. The following alternatives are established. Either (i) all positive solutions converge to one and the same trivial equilibrium, or (ii) every positive solution is neither bounded away from the trivial equilibria nor converges to them, or (iii) every positive solution is bounded away from the trivial equilibria. Moreover, for the random equation, we provide in case of alternative (iii) a fairly general condition under which every positive solution converges to uniformly positive equilibria. In the stochastic case, it is proved that there is no uniformly positive equilibrium, and under an appropriate condition, (iii) never occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Arnold, L. (1998). Random Dynamical Systems, Springer-Verlag, Berlin.

    Google Scholar 

  2. Arnold, L., and Chueshov, I. (1998). Order-preserving random dynamical systems: Equi-libria, attractors, applications. Dynamics and Stability of Systems 13, 265-280.

    Google Scholar 

  3. Arnold, L., and Chueshov, I. (1998). A limit trichotomy for order-preserving random systems, Institut fü r Dynamische Systeme, Universität Bremen, Report 437, to appear in ``Positivity.''

  4. Aronson, D. C., and Weinberger, H. F. (1975). Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Lecture Notes in Mathematics, Vol. 446, Springer, New York, pp. 5-49.

    Google Scholar 

  5. Cantrell, R. S., and Cosner, C. (1991). The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315-338.

    Google Scholar 

  6. Cantrell, R. S., and Cosner, C. (1989). Diffusive logistic equations with indefinite weights: Population models in disrupted environments I. Proc. Roy. Soc. Edinburgh, Sect. A 112, 293-318.

    Google Scholar 

  7. Cantrell, R. S., and Cosner, C. (1991). Diffusive logistic equations with indefinite weights: Population models in disrupted environments II. SIAM J. Math. Anal. 22, 1043-1064.

    Google Scholar 

  8. Chueshov, I. D., and Vuillermot, P.-A. (1998). Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovich's case. Probab. Theory Relat. Fields 112, 149-202.

    Google Scholar 

  9. Chueshov, I. D., and Vuillermot, P.-A. (1998). Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients. Ann. Inst. Henri Poincaré 15, 191-232.

    Google Scholar 

  10. Crauel, H., and Flandoli, F. (1994). Attractors for random dynamical systems. Probab. Theory Relat. Fields 100, 365-393.

    Google Scholar 

  11. Crauel, H., and Flandoli, F. (1998). Additive noise destroys a Pitchfork bifurcation. J. Dynamics and Diff. Eq. 10, 259-274.

    Google Scholar 

  12. Fife, P. C. (1979). Lecture notes in biomathematics, Springer-Verlag.

  13. Fife, P. C., and Peletier, L. A. (1977). Nonlinear diffusion in population genetics. Arch. Rat. Mech. Anal. 64, 93-109.

    Google Scholar 

  14. Fisher, R. A. (1950). Gene frequencies in a cline determined by selection and diffusion. Biometrics 6, 353-361.

    Google Scholar 

  15. Fleming, W. H. (1975). A selection-migration model in population genetics. J. Math. Biol. 2, 219-233.

    Google Scholar 

  16. Henry, D. (1981). Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Vol.840, Springer-Verlag, Berlin.

    Google Scholar 

  17. Hess, P. (1991). Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Mathematics, Vol. 247.

  18. Hess, P., and Weinberger, H. (1990). Convergence to spatial-temporal clines in the Fisher equation with time-periodic fitness. J. Math. Biol. 28, 83-98.

    Google Scholar 

  19. Krylov, N. V., and Rozovskii, B. L. (1981). Stochastic evolution equations. J. Sov. Math. 16, 1233-1277.

    Google Scholar 

  20. Pinsky, R. G. (1995). Positive Harmonic Functions and Diffusion, CUP, Cambridge.

    Google Scholar 

  21. Shen, W., and Yi, Y. (1998). Convergence in almost periodic Fisher and Kolmogorov models. J. Math. Biol. 37, 84-102.

    Google Scholar 

  22. Vuillermot, P.-A. (1991). Almost periodic attractors for a class of nonautonomous reaction-diffusion equations on ℝN, I. Global stabilization processes. J. Diff. Eq. 94, 228-253.

    Google Scholar 

  23. Vuillermot, P.-A. (1992). Almost periodic attractors for a class of nonautonomous reaction-diffusion equations on ℝN, II. Codimension-one stable manifolds. Diff. Int. Eq. 5, 693-720.

    Google Scholar 

  24. Vuillermot, P.-A. (1994). Almost periodic attractors for a class of nonautonomous reaction-diffusion equations on ℝN, III. Center curves and Liapunov stability. Nonlinear Anal. 22, 533-559.

    Google Scholar 

  25. Wu, J., Zhao, X.-Q., and He, X. (1996). Global asymptotic behavior in almost periodic Kolmogorov equations and chemostat models, preprint.

  26. Zhao, X.-Q., and Hutson, V. (1994). Permanence in Kolmogorov periodic predator-prey models with diffusion. Nonlinear Anal. Theor. Method. Appl. 23, 651-668.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetzer, G., Shen, W. & Zhu, S. Asymptotic Behavior of Positive Solutions of Random and Stochastic Parabolic Equations of Fisher and Kolmogorov Types. Journal of Dynamics and Differential Equations 14, 139–188 (2002). https://doi.org/10.1023/A:1012932212645

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012932212645

Keywords

Navigation