Skip to main content
Log in

Globally Optimized Spherical Point Arrangements: Model Variants and Illustrative Results

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The “well-balanced” distribution of points over the surface of a sphere is of significant interest in various fields of science. The quality of point configurations is typically expressed by criterion functions that have many local optima. A general global optimization framework is suggested to solve such problems. To illustrate the viability of this approach, the model development and solver system LGO is applied to four different model versions. Numerical results – including the visual representation of criterion functions in these models – are presented. The global optimization approach can be tailored to specific problem settings, and it is also applicable to a large variety of other model forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Barrón, S. Gómez and D. Romero, Lower energy icosahedral atomic clusters with incomplete core, Applied Mathematics Letters 10(5) (1997) 25–28.

    Google Scholar 

  2. K.E. Brenan, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (North-Holland, Amsterdam, 1989).

    Google Scholar 

  3. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, 2nd ed. (Springer, Berlin, 1988).

    Google Scholar 

  4. P.M. Dean, Molecular Similarity in Drug Design (Chapman and Hall, London, 1995).

    Google Scholar 

  5. J.P.K. Doye, Lennard-Jones clusters (1999), http://brian.ch.cam.ac.uk/~jon/structures/LJ.html.

  6. L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems (MIT Press, Cambridge, MA, 1988).

    Google Scholar 

  7. W. Habicht and B.L. van der Waerden, Lagerung von Punkten auf der Kugel, Mathematical Annals 123 (1951) 223–234.

    Google Scholar 

  8. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. (Springer, Berlin, 1996).

    Google Scholar 

  9. R.H. Hardin, N.J.A. Sloane and W.D. Smith, Minimal energy arrangements of points on a sphere. Arrangements of points on a sphere with minimal 1/r potential (1994), http://www.research.att.com/~njas/electrons/index.html. (Last reported web page update: 1997.)

  10. R.H. Hardin, N.J.A. Sloane and W.D. Smith, Minimal-energy clusters of hard spheres (1996), http://www.research.att.com/~njas/packings/index.html. (Last reported web page update: 1997.)

  11. B. Hartke, Global cluster geometry optimization by a phenotype algorithm with niches: Location of elusive minima, and low-order scaling with cluster size, Journal of Computational Chemistry 20(16) (1999) 1752–1759.

    Google Scholar 

  12. R. Horst and P.M. Pardalos, eds., Handbook of Global Optimization (Kluwer Academic, Dordrecht, 1995).

    Google Scholar 

  13. Lahey Computer Systems, Inc., Fortran 90 User's Guide (Version 4.5), LCS (Incline Village, NV, 1999).

    Google Scholar 

  14. A. Neumaier, Molecular modeling of proteins and mathematical prediction of protein structure, SIAM Review 39 (1997) 407–460.

    Google Scholar 

  15. A. Neumaier, Molecular modeling of proteins (1999), http://solon.cma.univie.ac.at/~neum/protein. html.

  16. J.A. Northby, Structure and binding of Lennard-Jones clusters: 13 ⩽ N ⩽ 147, Journal of Chemical Physics 87 (1987) 6166–6177.

    Google Scholar 

  17. R.H. Pain, ed., Mechanisms of Protein Folding (Oxford University Press, Oxford, 1994).

    Google Scholar 

  18. P.M. Pardalos, An open global optimization problem on the unit sphere, Journal of Global Optimization 6 (1995) 213.

    Google Scholar 

  19. P.M. Pardalos, D. Shalloway and G. Xue, Optimization methods for computing global minima of nonconvex potential energy functions, Journal of Global Optimization 4 (1994) 117–133.

    Google Scholar 

  20. P.M. Pardalos, D. Shalloway and G. Xue, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, DIMACS Series, Vol. 23 (Amer. Math. Soc., Providence, RI, 1996).

    Google Scholar 

  21. J.D. Pintér, Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications) (Kluwer Academic, Dordrecht, 1996).

    Google Scholar 

  22. J.D. Pintér, A model development system for global optimization; in: High Performance Software for Nonlinear Optimizaton: Status and Perspectives, eds. R. De Leone, A. Murli, P.M. Pardalos and G. Toraldo (Kluwer Academic, Dordrecht, 1998) pp. 301–314.

    Google Scholar 

  23. J.D. Pintér, LGO-A Model Development System for Continuous Global Optimization. User's Guide (Pintér Consulting Services, Halifax, NS, 2001).

    Google Scholar 

  24. J.D. Pintér, Continuous global optimization: An introduction to models, solution approaches, tests and applications, Interactive Transactions in Operations Research and Management Science 2(2) (1999), http://catt.bus.okstate.edu/itorms/pinter/.

  25. J.D. Pintér, W.J.H. Stortelder and J.J.B. de Swart, Computation of elliptic Fekete point sets, Research Report MAS-R9705, National Research Institute forMathematics and Computer Science (CWI), Amsterdam (1997). (Revised version appeared in: CWI Quarterly 12(1) (1999) 63-76.)

    Google Scholar 

  26. E.A. Rakhmanov, E.A. Saff and Y.M. Zhou, Minimal discrete energy on the sphere, Mathematical Research Letters 1 (1994) 647–662.

    Google Scholar 

  27. E.A. Rakhmanov, E.A. Saff and Y.M. Zhou, Electrons on the sphere, in: Computational Methods and Function Theory, eds. R.M. Ali, St. Ruscheweyh and E.B. Saff (World Scientific, Singapore, 1995) pp. 111–127.

    Google Scholar 

  28. D. Romero, C. Barrón and S. Gómez, The optimal geometry of Lennard-Jones clusters (1999) to appear.

  29. D. Rusin, Frequently-asked questions about spheres, http://www.math.niu.edu/~rusin/known-math/index/spheres.html (1999).

  30. E.B. Saff and A.B.J. Kuijlaars, Distributing many points on a sphere, The Mathematical Intelligencer 19(1) (1997) 5–11.

    Google Scholar 

  31. S. Smale, Mathematical problems for the next century, The Mathematical Intelligencer 20(1)(1998) 7–15.

    Google Scholar 

  32. D.J. Wales and H.A. Scheraga, Global optimization of clusters, crystals, and biomolecules, Science 285 (1999) 1368–1372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pintér, J.D. Globally Optimized Spherical Point Arrangements: Model Variants and Illustrative Results. Annals of Operations Research 104, 213–230 (2001). https://doi.org/10.1023/A:1013107507150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013107507150

Navigation