Skip to main content
Log in

Uniform Estimation of Sub-Riemannian Balls

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

A fundamental result of sub-Riemannian geometry, the ball-box theorem, states that small sub-Riemannian balls look like boxes \([ - \varepsilon ^{\omega _1 } ,\varepsilon ^{\omega _1 } ]\) × ··· × \([ - \varepsilon ^{\omega _n } ,\varepsilon ^{\omega _n } ]\) in privileged coordinates. This description is not uniform in general. Thus, it does allow us neither to compute Hausdorff measures and dimensions nor to prove the convergence of certain motion planning algorithms.

In this paper, we present a description of the shape of small sub-Riemannian balls depending uniformly on their center and their radius. This result is a generalization of the ball-box theorem. The proof is based on the one hand on a lifting method, which replaces the sub-Riemannian manifold by an extended equiregular one (where the ball-box theorem is uniform); and on the other hand, it based on an estimate of sets defined by families of vector fields, which allows us to project the balls in suitable coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham and J. E. Marsden, Foundations of mechanics. Addison-Wesley, 1978.

  2. A. A. Agrachev, R. V. Gamkrelidze, and A. V. Sarychev, Local invariants of smooth control systems. Acta Appl. Math. 14 (1989), 191–237.

    Google Scholar 

  3. A. A. Agrachev and A. V. Sarychev, Filtrations of a Lie algebra of vector fields and nilpotent approximations of control systems. Dokl. Akad. Nauk SSSR 285 (1987), 777–781. English translation: Soviet Math. Dokl. 36 (1988), 104–108.

    Google Scholar 

  4. A. Bellaïche, The tangent space in sub-Riemannian geometry. In: Sub-Riemannian Geometry, Progress in Mathematics (A. Bellaïche and J.-J. Risler, Eds.), Birkhäuser, 1996.

  5. N. Bourbaki, Groupes et Algèbres de Lie. Hermann, Paris, 1972.

    Google Scholar 

  6. W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117 (1940), 98–115.

    Google Scholar 

  7. C. Godbillon, Géométrie Différentielle et Mécanique Analytique. Hermann, Paris, 1969.

    Google Scholar 

  8. N. Goodman, Nilpotent Lie groups. In: Lecture Notes in Math. Vol. 562, Springer Verlag, 1976.

  9. M. Gromov, Carnot-Carathéodory spaces seen from within. In: Sub-Riemannian Geometry, Progress in Mathematics (A. Bellaïche and J.-J. Risler, Eds.), Birkhäuser, 1996.

  10. H. Hermes, Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 (1991), No. 2, 238–264.

    Google Scholar 

  11. F. Jean Entropy and complexity of a path in sub-Riemannian geometry. In: Technical Report, No. 331, ENSTA (1999).

  12. _____, Complexity of nonholonomic motion planning. Internat. J. Control 74 (2001), No. 8, 776–782.

  13. F. Jean, J-P. Laumond, G. Oriolo, and M. Venditelli, Nonhomogeneous nilpotent approximations for systems with singularities. En préparation, 2001.

  14. I. Kupka, Géométrie sous-riemannienne. In: Séminaire N. Bourbaki, No. 817 (1996).

  15. G. A. Margulis and G. D. Mostow, Some remarks on the definition of tangent cones in a Carnot-Carathéodory space. J. d'Analyse Mathématique 80 (2000), 299–317.

    Google Scholar 

  16. J. Mitchell, On Carnot-Carathéodory metrics. J. Differential Geom. 21 (1985), 35–45.

    Google Scholar 

  17. T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras. J. Math. Soc. Japan 18 (1966), 398–404.

    Google Scholar 

  18. A. Nagel, E. M. Stein, and S. Wainger, Metrics defined by vector fields. Acta Math. 155 (1985), 103–147.

    Google Scholar 

  19. P. Pansu, Une inégalité isopérimétrique sur le groupe d'Heisenberg. C.R. Acad. Sci. Paris 295 (1982), 127–130.

    Google Scholar 

  20. P. K. Rashevsky, Any two points of a totally nonholonomic space may be connected by an admissible line. (Russian) Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math. No. 2 (1938), 83–94.

  21. C. Rockland, Intrinsic nilpotent approximations. Acta Appl. Math. 8 (1987), 213–270.

    Google Scholar 

  22. L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups. Acta Math. 137 (1976), 247–320.

    Google Scholar 

  23. G. Stefani, On local controllability of a scalar-input system. In: Theory and Appl. of Nonlinear Control Syst. (Lindquist Btionyrnes, Ed.), North Holland, Amsterdam (1986), 167–179.

    Google Scholar 

  24. H. J. Sussmann, An extension of theorem of Nagano on transitive Lie algebras. Proc. Amer. Math. Soc. 45 (1974), 349–356.

    Google Scholar 

  25. M. Venditelli, G. Oriolo, and J.-P. Laumond, Steering nonholonomic systems via nilpotent approximations: the general two-trailer system. In: IEEE Int. Conf. on Robotics and Automation (1999), 823–829.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jean, F. Uniform Estimation of Sub-Riemannian Balls. Journal of Dynamical and Control Systems 7, 473–500 (2001). https://doi.org/10.1023/A:1013154500463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013154500463

Navigation