Skip to main content
Log in

Foundations of a Nonlinear Distributional Geometry

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Colombeau's construction of generalized functions (in its special variant) is extended to a theory of generalized sections of vector bundles. As particular cases, generalized tensor analysis and exterior algebra are studied. A point value characterization for generalized functions on manifolds is derived, several algebraic characterizations of spaces of generalized sections are established and consistency properties with respect to linear distributional geometry are derived. An application to nonsmooth mechanics indicates the additional flexibility offered by this approach compared to the purely distributional picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R. and Marsden, J. E.: Foundations of Mechanics, 2nd edn, Benjamin/Cummings, Reading, MA, 1978.

    Google Scholar 

  2. Aragona, J. and Biagioni, H. A.: Intrinsic definition of the Colombeau algebra of generalized functions, Anal. Math. 17 (1991), 75–132.

    Google Scholar 

  3. Balasin, H.: Geodesics for impulsive gravitational waves and the multiplication of distributions, Classical Quantum Gravity 14 (1997), 455–462.

    Google Scholar 

  4. Bourbaki, N.: Algebra I, Chapters 1–3, Elements of Mathematics, Hermann, Paris, Addison-Wesley, Mass., 1974.

    Google Scholar 

  5. Clarke, C. J. S., Vickers, J. A. and Wilson, J. P.: Generalised functions and distributional curvature of cosmic strings, Classical Quantum Gravity 13 (1996).

  6. Colombeau, J. F.: New Generalized Functions and Multiplication of Distributions, North-Holland, Amsterdam, 1984.

    Google Scholar 

  7. Colombeau, J. F.: Elementary Introduction to New Generalized Functions, North-Holland, Amsterdam, 1985.

    Google Scholar 

  8. Dapi?, N., Pilipovi?, S. and Scarpalézos, D.:Microlocal analysis and Colombeau's generalized functions: propagation of singularities, J. Anal. Math. 75 (1998), 51–66.

    Google Scholar 

  9. De Rham, G.: Differentiable Manifolds, Grundlehren Math. Wiss., Springer, Berlin, 1984.

    Google Scholar 

  10. De Roever, J.W. and Damsma, M.: Colombeau algebras on a \({\mathcal{C}}^\infty\)-manifold, Indag. Math., N.S. 2(3) (1991).

  11. Dieudonné, J.: Treatise on Analysis, Vol. 3, Academic Press, New York, 1972.

    Google Scholar 

  12. Greub, W., Halperin, S. and Vanstone, R.: Connections, Curvature, and Cohomology I, Pure Appl. Math. 47, Academic Press, New York, 1972.

    Google Scholar 

  13. Grosser, M., Farkas, E., Kunzinger, M. and Steinbauer, R.: On the foundations of nonlinear generalized functions I, II, Mem. Amer. Math. Soc. 153, 729 (2001).

    Google Scholar 

  14. Grosser, M., Hörmann, G., Kunzinger, M. and Oberguggenberger, M. (eds): Nonlinear Theory of Generalized Functions, CRC Res. Notes 401,CRC Press, Boca Raton, 1999.

    Google Scholar 

  15. Grosser, M., Kunzinger, M., Steinbauer, R. and Vickers, J.: A global theory of algebras of generalized functions, Adv. Math., to appear 2002.

  16. Grothendieck, A.: Topological Vector Spaces, Notes Math. Appl., Gordon and Breach, New York, 1973.

    Google Scholar 

  17. Hermann, R.: C-O-R Generalized Functions, Current Algebras, and Control, Interdiscip.Math. 30, Math Sci Press, 1994.

  18. Hermann, R. and Oberguggenberger, M.: Generalized functions, calculus of variations and nonlinear ODEs, Preprint, 1997.

  19. Hermann, R. and Oberguggenberger, M.: Ordinary differential equations and generalized functions, In: M. Grosser, G. Hörmann, M. Kunzinger and M. Oberguggenberger (eds), Nonlinear Theory of Generalized Functions, CRC Res. Notes 401, CRC Press, Boca Raton, 1999, pp. 85–98.

    Google Scholar 

  20. Hörmander, L.: The Analysis of Linear Partial Differential Operators I, Grundlehren Math. Wiss. 256, Springer, Berlin, 1990.

    Google Scholar 

  21. Kahn, D. W.: Introduction to Global Analysis, Academic Press, New York, 1980.

    Google Scholar 

  22. Kashiwara, M. and Schapira, P.: Sheaves on Manifolds, Grundlehren Math. Wiss., Springer, Berlin, 1990.

    Google Scholar 

  23. Kolar, I., Michor, P. W. and Slovak, J.: Natural Operations in Differential Geometry, Springer, Berlin, 1993.

    Google Scholar 

  24. Köthe, G.: Topological Vector Spaces II, Springer, Berlin, 1979.

    Google Scholar 

  25. Kunzinger, M.: Barrelledness, Baire-like and (LF)-Spaces, Pitman Res. Notes in Math. 298, Longman, Harlow, 1993.

    Google Scholar 

  26. Kunzinger, M.: Lie transformation groups in Colombeau algebras, PhD thesis, University of Vienna, 1996.

  27. Kunzinger, M. and Oberguggenberger, M.: Group analysis of differential equations and generalized functions, SIAM J. Math. Anal. 31(6) (2000), 1192–1213.

    Google Scholar 

  28. Kunzinger, M. and Steinbauer, R.: A note on the Penrose junction conditions, Classical Quantum Gravity 16 (1999), 1255–1264.

    Google Scholar 

  29. Kunzinger, M. and Steinbauer, R.: Generalized pseudo-Riemannian geometry, submitted, 2001.

  30. Mallios, A.: Geometry of Vector Sheaves, Vols. I, II,Math. Appl. 439, Kluwer, Dordrecht, 1998.

    Google Scholar 

  31. Mallios, A. and Rosinger, E. E.: Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology, Acta Appl. Math. 55(3) (1999), 231–250.

    Google Scholar 

  32. Marsden, J. E.: Generalized Hamiltonian mechanics, Arch. Rat.Mech. Anal. 28(4) (1968), 323–361.

    Google Scholar 

  33. Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Res. Notes in Math. 259, Longman, Harlow, 1992.

    Google Scholar 

  34. Oberguggenberger, M. and Kunzinger, M.: Characterization of Colombeau generalized functions by their pointvalues, Math. Nachr. 203 (1999), 147–157.

    Google Scholar 

  35. Parker, P.: Distributional geometry, J. Math. Phys. 20(7) (1979), 1423–1426.

    Google Scholar 

  36. Penrose, R. and Rindler, W.: Spinors and Space-time I, Cambridge University Press, 1984.

  37. Schaefer, H. H.: Topological Vector Spaces, 5th edn, Springer, New York, 1986.

    Google Scholar 

  38. Simanca, S. R.: Pseudo-differential Operators, Pitman Res. Notes in Math. 236, Longman, Harlow, 1990.

    Google Scholar 

  39. Steinbauer, R.: The ultrarelativistic Reissner-Nordstrøm field in the Colombeau algebra, J. Math. Phys. 38 (1997), 1614–1622.

    Google Scholar 

  40. Vickers, J. A.: Nonlinear generalized functions in general relativity, In: M. Grosser, G. Hörmann, M. Kunzinger and M. Oberguggenberger (eds), Nonlinear Theory of Generalized Functions, CRC Res. Notes 401, CRC Press, Boca Raton, 1999, pp. 275–290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunzinger, M., Steinbauer, R. Foundations of a Nonlinear Distributional Geometry. Acta Applicandae Mathematicae 71, 179–206 (2002). https://doi.org/10.1023/A:1014554315909

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014554315909

Navigation