Skip to main content
Log in

Metastability in Glauber Dynamics in the Low-Temperature Limit: Beyond Exponential Asymptotics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider Glauber dynamics of classical spin systems of Ising type in the limit when the temperature tends to zero in finite volume. We show that information on the structure of the most profound minima and the connecting saddle points of the Hamiltonian can be translated into sharp estimates on the distribution of the times of metastable transitions between such minima as well as the low lying spectrum of the generator. In contrast with earlier results on such problems, where only the asymptotics of the exponential rates is obtained, we compute the precise pre-factors up to multiplicative errors that tend to 1 as T↓0. As an example we treat the nearest neighbor Ising model on the 2 and 3 dimensional square lattice. Our results improve considerably earlier estimates obtained by Neves–Schonmann,(1) Ben Arous–Cerf,(2) and Alonso–Cerf.(3) Our results employ the methods introduced by Bovier, Eckhoff, Gayrard, and Klein in refs. 4 and 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. J. Neves and R. H. Schonmann, Critical droplets and metastability for a Glauber dynamics at very low temperatures, Comm. Math. Phys. 137(2):209–230 (1991).

    Google Scholar 

  2. G. Ben Arous and R. Cerf, Metastability of the three-dimensional Ising model on a torus at very low temperatures, Electron. J. Probab. 1 (1996).

  3. L. Alonso and R. Cerf, The three-dimensional polyominoes of minimal area, Electron. J. Combin. 3(1) (1996), Research Paper 27.

  4. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in stochastic dynamics of disordered mean-field models, Probab. Theory Related Fields 119:99–161 (2001).

    Google Scholar 

  5. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability and low-lying spectra in reversible Markov chains. WIAS-preprint 601, to appear in Commun. Math. Phys. (2002).

  6. M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, Metastable behavior of stochastic dynamics: A pathwise approach, J. Statist. Phys. 35:603–634 (1984).

    Google Scholar 

  7. M. E. Vares, Large deviations and metastability. Disordered systems (Temuco, 1991/ 1992), in Travaux en Cours, Vol. 53 (Hermann, Paris, 1996), pp. 1–62.

    Google Scholar 

  8. M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 2nd ed., in Grundlehren der Mathematischen Wissenschaften, Vol. 260 (Springer-Verlag, New York, 1998).

    Google Scholar 

  9. E. Olivieri and E. Scoppola, Markov chains with exponentially small transition probabilities: First exit problem from a general domain. I. The reversible case, J. Statist. Phys. 79:613–647 (1995).

    Google Scholar 

  10. E. Olivieri and E. Scoppola, Markov chains with exponentially small transition probabilities: First exit problem from a general domain. II. The general case, J. Statist. Phys. 84:987–1041 (1996).

    Google Scholar 

  11. O. Catoni, Sharp large deviations estimates for simulated annealing algorithms, Ann. Inst. H. Poincaré Probab. Statist. 27:291–383 (1991).

    Google Scholar 

  12. O. Catoni and R. Cerf, The exit path of a Markov chain with rare transitions, ESAIM Probab. Statist. 1:95–144 (1995/97).

    Google Scholar 

  13. E. J. Neves, A discrete variational problem related to Ising droplets at low temperatures, J. Statist. Phys. 80:103–123 (1995).

    Google Scholar 

  14. E. Scoppola, Renormalization and graph methods for Markov chains, in Advances in Dynamical Systems and Quantum Physics (Capri, 1993) (World Scientific Publishing, River Edge, New Jersey, 1995), pp. 260–281.

    Google Scholar 

  15. G. Ben Arous, A. Bovier, and V. Gayrard, Glauber dynamics for the random energy model I: Metastable motion on the extreme states. WIAS-preprint 690. http://mpej.unige. ch/mp_arc/c/01/01–374.ps.gz (2001).

  16. G. Ben Arous, A. Bovier, and V. Gayrard, Glauber dynamics for the random energy model II: Aging below the critical temperature. WIAS-preprint 691. http://mpej.unige. ch/mp_arc/c/01/01–375.ps.gz (2001).

  17. L. Miclo, Comportement de spectres d'opérateurs de Schrödinger à basse température, Bull. Sci. Math. 119:529–553 (1995).

    Google Scholar 

  18. R. A. Holley, S. Kusuoka, and S. W. Stroock, Asymptotics of the spectral gap with applications to the theory of simulated annealing, J. Funct. Anal. 83:333–347 (1989).

    Google Scholar 

  19. M. Eckhoff, Capacity and the low-lying spectrumn in attractive Markov chains. Ph.D. thesis (University of Potsdam, 2001).

  20. P. Doyle and J. L. Snell, Random walks and electric networks, in Carus Mathematical Monographs, Vol. 22 (Mathematical Association of America, Washington, DC, 1984).

    Google Scholar 

  21. P. Dehghanpour and R. H. Schonmann, Metropolis dynamics via nucleation and growth, Commun. Math. Phys. 188:89–119 (1997).

    Google Scholar 

  22. Th. M. Liggett, Interacting particle systems, in Grundlehren der Mathematischen Wissenschaften, Vol. 276 (Springer-Verlag, New York, 1985).

    Google Scholar 

  23. P. M. Soardi, Potential Theory on Infinite Networks, LNM 1590 (Springer, Berlin/ Heidelberg/New York, 1994).

    Google Scholar 

  24. W. Th. F. den Hollander, F. R. Nardi, E. Olivieri, and E. Scoppola, Droplet growth for three dimensional Kawasaki dynamics. In preparation (2001).

  25. R. H. Schonmann and S. B. Shlosman, Wulff droplets and the metastable relaxation of kinetic Ising models Comm. Math. Phys. 194:389–462 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bovier, A., Manzo, F. Metastability in Glauber Dynamics in the Low-Temperature Limit: Beyond Exponential Asymptotics. Journal of Statistical Physics 107, 757–779 (2002). https://doi.org/10.1023/A:1014586130046

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014586130046

Navigation