Skip to main content
Log in

Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's 4 and 8 squares identities to 4n 2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions. In addition, we extend Jacobi's special analysis of 2 squares, 2 triangles, 6 squares, 6 triangles to 12 squares, 12 triangles, 20 squares, 20 triangles, respectively. Our 24 squares identity leads to a different formula for Ramanujan's tau function τ(n), when n is odd. These results, depending on new expansions for powers of various products of classical theta functions, arise in the setting of Jacobi elliptic functions, associated continued fractions, regular C-fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. The Schur function form of these infinite families of identities are analogous to the η-function identities of Macdonald. Moreover, the powers 4n(n + 1), 2n 2 + n, 2n 2n that appear in Macdonald's work also arise at appropriate places in our analysis. A special case of our general methods yields a proof of the two Kac–Wakimoto conjectured identities involving representing a positive integer by sums of 4n 2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C nonterminating 6φ5 summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 2, 4, 6, and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n 2 and n(n + 1) squares. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Sierpinski (1907), Uspensky (1913, 1925, 1928), Bulygin (1914, 1915), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Bell (1919), Estermann (1936), Rankin (1945, 1962), Lomadze (1948), Walton (1949), Walfisz (1952), Ananda-Rau (1954), van der Pol (1954), Krätzel (1961, 1962), Bhaskaran (1969), Gundlach (1978), Kac and Wakimoto (1994), and, Liu (2001). We list these authors by the years their work appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.H. Abel, “Recherches sur les fonctions elliptiques,” J. Reine Angew. Math. 2 (1827), 101-181; reprinted in Œuvres Complètes T1, Grondahl and Son, Christiania, 1881, pp. 263-388; reprinted by Johnson Reprint Corporation, New York, 1965.

    Google Scholar 

  2. W.A. Al-Salam and L. Carlitz, “Some determinants of Bernoulli, Euler, and related numbers,” Portugal. Math. 18(2) (1959), 91-99.

    Google Scholar 

  3. K. Ananda-Rau, “On the representation of a number as the sum of an even number of squares,” J. Madras Univ. Sect. B 24 (1954), 61-89.

    Google Scholar 

  4. G.E. Andrews, “Applications of basic hypergeometric functions,” SIAM Rev. 16 (1974), 441-484.

    Google Scholar 

  5. G.E. Andrews, “q-Series: Their development and application in analysis, number theory, combinatorics, physics and computer algebra,” in NSF CBMS Regional Conference Series, Vol. 66, 1986.

  6. G.E. Andrews, R. Askey, and R. Roy, “Special functions,” in Encyclopedia of Mathematics and its Applications, Vol. 71 (G.-C. Rota, ed.), Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  7. G.E. Andrews and B.C. Berndt, Ramanujan's Lost Notebook, Part I, Springer-Verlag, PNew York, in preparation.

  8. T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Vol. 41 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1976.

    Google Scholar 

  9. R. Askey and M.E.H. Ismail, “Recurrence relations, continued fractions and orthogonal polynomials,” Mem. Amer. Math. Soc. 300 (1984), 108 pp.

    Google Scholar 

  10. H. Au-Yang and J.H.H. Perk, “Critical correlations in a Z-invariant inhomogeneous Ising model,” Phys. A 144 (1987), 44-104.

    Google Scholar 

  11. I.G. Bashmakova, “Diophantus and diophantine equations,” Vol. 20 of The Dolciani Mathematical Expositions, Mathematical Association of America, Washington, DC, 1997, xvi+90 pp.; translated from the 1972 Russian original by Abe Shenitzer and updated by Joseph Silverman.

    Google Scholar 

  12. I.G. Bashmakova and G.S. Smirnova, “The birth of literal algebra,” Amer. Math. Monthly 106 (1999), 57-66; translated from the Russian and edited by Abe Shenitzer.

    Google Scholar 

  13. E.F. Beckenbach, W. Seidel, and O. Szász, “Recurrent determinants of Legendre and of ultraspherical polynomials,” Duke Math. J. 18 (1951), 1-10.

    Google Scholar 

  14. E.T. Bell, “On the number of representations of 2n as a sum of 2r squares,” Bull. Amer. Math. Soc. 26 (1919), 19-25.

    Google Scholar 

  15. E.T. Bell, “Theta expansions useful in arithmetic,” The Messenger of Mathematics (New Series) 53 (1924), 166-176.

    Google Scholar 

  16. E.T. Bell, “On the power series for elliptic functions,” Trans. Amer. Math. Soc. 36 (1934), 841-852.

    Google Scholar 

  17. E.T. Bell, “The arithmetical function M(n, f, g) and its associates connected with elliptic power series,” Amer. J. Math. 58 (1936), 759-768.

    Google Scholar 

  18. E.T. Bell, “Polynomial approximations for elliptic functions,” Trans. Amer. Math. Soc. 44 (1938), 47-57.

    Google Scholar 

  19. C. Berg and G. Valent, “The Nevanlinna parameterization for some indeterminate Stieltjes moment problems associated with birth and death processes,” Methods Appl. Anal. 1 (1994), 169-209.

    Google Scholar 

  20. B.C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989.

    Google Scholar 

  21. B.C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.

    Google Scholar 

  22. B.C. Berndt, “Ramanujan's theory of theta-functions,” in Theta Functions From the Classical to the Modern (M. Ram Murty, ed.), Vol. 1 of CRM Proceedings & Lecture Notes, American Mathematical Society, Providence, RI, 1993, 1-63.

    Google Scholar 

  23. B.C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1998.

    Google Scholar 

  24. B.C. Berndt, “Fragments by Ramanujan on Lambert Series,” in Number Theory and Its Applications (Kyoto, 1997) (K. Györy and S. Kanemitsu, eds.), Vol. 2 of Dev. Math., Kluwer Academic Publishers, Dordrecht, 1999, pp. 35-49.

    Google Scholar 

  25. M. Bhaskaran, “A plausible reconstruction of Ramanujan's proof of his formula for ? 4s (q),” in Ananda Rau Memorial Volume, Publications of the Ramanujan Institute, No. 1., Ramanujan Institute, Madras, 1969, pp. 25-33.

    Google Scholar 

  26. M.N. Bleicher and M.I. Knopp, “Lattice points in a sphere,” Acta Arith. 10 (1964/1965), 369-376.

    Google Scholar 

  27. F. van der Blij[i], “The function τ of S. Ramanujan,” Math. Student 18 (1950), 83-99.

    Google Scholar 

  28. J.M. Borwein and P.B. Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987.

    Google Scholar 

  29. D.M. Bressoud, “Proofs and confirmations. The story of the alternating sign matrix conjecture,” in MAA Spectrum, Mathematical Association of America, Washington, DC/Cambridge University Press, Cambridge, 1999, pp. 245-256.

    Google Scholar 

  30. D.M. Bressoud and J. Propp, “How the alternating sign matrix conjecture was solved,” Notices Amer. Math. Soc. 46 (1999), 637-646.

    Google Scholar 

  31. C. Brezinski, History of Continued Fractions and Padé Approximants, Vol. 12 of Springer Series in Computational Mathematics, Springer-Verlag, New York, 1991.

    Google Scholar 

  32. D.J. Broadhurst, “On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory,” J. Math. Phys., to appear.

  33. V. Bulygin, “Sur une application des fonctions elliptiques au problème de représentation des nombres entiers par une somme de carrés” Bull. Acad. Imp. Sci. St. Petersbourg Ser. VI 8 (1914), 389-404; B. Boulyguine, “Sur la représentation d'un nombre entier par une somme de carrés,” Comptes Rendus Paris 158 (1914), 328-330.

    Google Scholar 

  34. V. Bulygin (B. Boulyguine), “Sur la représentation d'un nombre entier par une somme de carrés,” Comptes Rendus Paris 161 (1915), 28-30.

    Google Scholar 

  35. J.L. Burchnall, “An algebraic property of the classical polynomials,” Proc. London Math. Soc. 1(3) (1951), 232-240.

    Google Scholar 

  36. L. Carlitz, “Hankel determinants and Bernoulli numbers,” Tôhoku Math. J. 5(2) (1954), 272-276.

    Google Scholar 

  37. L. Carlitz, “Note on sums of 4 and 6 squares,” Proc. Amer. Math. Soc. 8 (1957), 120-124.

    Google Scholar 

  38. L. Carlitz, “Some orthogonal polynomials related to elliptic functions,” Duke Math. J. 27 (1960), 443-459.

    Google Scholar 

  39. L. Carlitz, “Bulygin's method for sums of squares. The arithmetical theory of quadratic forms, I,” in Proc. Conf., Louisiana State Univ., Baton Rouge, LA, 1972 (dedicated to Louis Joel Mordell); also in J. Number Theory 5 (1973), 405-412.

    Google Scholar 

  40. R. Chalkley, “A persymmetric determinant,” J. Math. Anal. Appl. 187 (1994), 107-117.

    Google Scholar 

  41. H.H. Chan, “On the equivalence of Ramanujan's partition identities and a connection with the Rogers-Ramanujan continued fraction,” J. Math. Anal. Appl. 198 (1996), 111-120.

    Google Scholar 

  42. H.H. Chan, private communication, August 1996.

  43. K. Chandrasekharan, Elliptic Functions, Vol. 281 of Grundlehren Math. Wiss, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  44. T.S. Chihara, An Introduction to Orthogonal Polynomials, Vol. 13 of Mathematics and Its Applications Gordon and Breach, New York, 1978.

    Google Scholar 

  45. S.H. Choi and D. Gouyou-Beauchamps, “Enumération de tableaux de Young semi-standard,” in Series Formelles et Combinatoire Algebrique: Actés du Colloque (M. Delest, G. Jacob, and P. Leroux, eds.), Université Bordeaux I, 2-4 May, 1991, pp. 229-243.

  46. D.V. Chudnovsky and G.V. Chudnovsky, “Computational problems in arithmetic of linear differential equations. Some diophantine applications,” Number Theory New York, 1985-88 (D. & G. Chudnovsky, H. Cohn, and M. Nathanson, eds.), Vol. 1383 of Lecture Notes in Math., Springer-Verlag, New York, 1989, pp. 12-49.

    Google Scholar 

  47. D.V. Chudnovsky and G.V. Chudnovsky, “Hypergeometric and modular function identities, and new rational approximations to and continued fraction expansions of classical constants and functions,” A Tribute to Emil Grosswald: Number theory and related analysis (M. Knopp and M. Sheingorn, eds.), Vol. 143 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 1993, pp. 117-162.

    Google Scholar 

  48. L. Comtet, Advanced Combinatorics, D. Reidel Pub. Co., Dordrecht-Holland/Boston-USA, 1974.

    Google Scholar 

  49. E. Conrad, “A note on certain continued fraction expansions of Laplace transforms of Dumont's bimodular Jacobi elliptic functions,” preprint.

  50. E. Conrad, A Handbook of Jacobi Elliptic Functions, Class notes (1996), preprint.

  51. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3rd edn. (with additional contributions by E. Bannai, R.E. Borcherds, J. Leech, S.P. Norton, A.M. Odlyzko, R.A. Parker, L. Queen, and B.B. Venkov), Vol. 290 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, 1999.

    Google Scholar 

  52. T.L. Curtright and C.B. Thorn, “Symmetry patterns in the mass spectra of dual string models,” Nuclear Phys. B 274 (1986), 520-558.

    Google Scholar 

  53. T.W. Cusick, “Identities involving powers of persymmetric determinants,” Proc. Cambridge Philos. Soc. 65 (1969), 371-376.

    Google Scholar 

  54. H. Datta, “On the theory of continued fractions,” Proc. Edinburgh Math. Soc. 34 (1916), 109-132.

    Google Scholar 

  55. P. Delsarte, “Nombres de Bell et polynômes de Charlier,” C.R. Acad. Sc. Paris (Series A) 287 (1978), 271-273.

    Google Scholar 

  56. L.E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966.

    Google Scholar 

  57. A.C. Dixon, “On the doubly periodic functions arising out of the curve x 3 + y 3−3αxy =1,” The Quarterly Journal of Pure and Applied Mathematics 24 (1890), 167-233

    Google Scholar 

  58. D. Dumont, “Une approche combinatoire des fonctions elliptiques de Jacobi,” Adv. in Math. 41 (1981), 1-39.

    Google Scholar 

  59. D. Dumont, “Pics de cycle et d´erivées partielles,” Séminaire Lotharingien de Combinatoire 13(B13a) (1985), 19 pp.

  60. D. Dumont, “Le paramétrage de la courbe d'´equation x 3 + y 3 =1” (Une introduction élémentaire aux fonctions elliptiques), preprint (May 1988).

  61. F.J. Dyson, “Missed opportunities,” Bull. Amer. Math. Soc. 78 (1972), 635-653.

    Google Scholar 

  62. R. Ehrenborg, “The Hankel determinant of exponential polynomials,” Amer. Math. Monthly 107 (2000), 557-560.

    Google Scholar 

  63. A. Erdélyi (with A. Magnus, F. Oberhettinger, and F. Tricomi), Higher Transcendental Functions, Bateman Manuscript Project (A. Erdélyi, ed.), Vol. II, McGraw-Hill Book Co., New York, 1953; reissued by Robert E. Krieger Pub. Co., Malabar, Florida, 1981 and 1985.

    Google Scholar 

  64. T. Estermann, “On the representations of a number as a sum of squares,” Acta Arith. 2 (1936), 47-79.

    Google Scholar 

  65. L. Euler, “De fractionibus continuis dissertatio,” Comm. Acad. Sci. Imp. St. Pétersbourg 9 (1737), 98-137; reprinted inWorks. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, and P. Stackel, eds.), Ser. I, Vol. 14 (C. Boehm and G. Faber, eds.), B.G. Teubner, Lipsiae 1925, pp. 187-215; see also, “An essay on continued fractions,” Math. Systems Theory 18 (1985), 295-328; translated from the Latin by Myra F.Wyman and Bostwick F. Wyman.

    Google Scholar 

  66. L. Euler, “De fractionibus continuis observationes,” Comm. Acad. Sci. Imp. St. Pétersbourg 11 (1739), 32-81; reprinted in Works. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, and P. Stackel, eds.), Ser. I, Vol. 14 (C. Boehm and G. Faber, eds.), B.G. Teubner, Lipsiae, 1925, pp. 291-349.

    Google Scholar 

  67. L. Euler, Introduction in Analysin Infinitorum, Vol. I, Marcum-Michaelem Bousquet, Lausanne, 1748; reprinted in Works. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, and P. Stackel, eds.), Ser. I, Vol. 8 (A. Krazer and F. Rudio, eds.), B.G. Teubner, Lipsiae, 1922, pp. 1-392, (see bibliographie on page b*); see also, Introduction to Analysis of the Infinite: Book I, Springer-Verlag, New York, 1988; translated from the Latin by John D. Blanton.

    Google Scholar 

  68. L. Euler, De transformatione serierum in fractiones continuas: ubi simul haec theoria non mediocriter amplificatur, Opuscula Analytica, t. ii, Petropoli: Typis Academiae Imperialis Scientiarum (1783-1785), 1785, pp. 138-177; reprinted in Works. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, A. Speiser, and L.G. du Pasquier, eds.), Ser. I, Vol. 15 (G. Faber, ed.), B.G. Teubner, Lipsiae, 1927, pp. 661-700.

    Google Scholar 

  69. P. Flajolet, “Combinatorial aspects of continued fractions,” Discrete Math. 32 (1980), 125-161.

    Google Scholar 

  70. P. Flajolet, “On congruences and continued fractions for some classical combinatorial quantities,” Discrete Math. 41 (1982), 145-153.

    Google Scholar 

  71. P. Flajolet and J. Françon, “Elliptic functions, continued fractions and doubled permutations,” European J. Combin. 10 (1989), 235-241.

    Google Scholar 

  72. F.G. Frobenius, “ Ñber Relationen zwischen denNäherungsbrüchen von Potenzreihen,” J. Reine Angew. Math. 90 (1881), 1-17; reprinted inFrobenius' Gesammelte Abhandlungen (J.-P. Serre, ed.),Vol. 2, Springer-Verlag, Berlin, 1968, pp. 47-63.

    Google Scholar 

  73. F.G. Frobenius and L. Stickelberger, “Zur Theorie der elliptischen Functionen,” J. Reine Angew. Math. 83 (1877), 175-179; reprinted in Frobenius' Gesammelte Abhandlungen (J.-P. Serre, ed.), Vol. 1, Springer-Verlag, Berlin, 1968, pp. 335-339.

    Google Scholar 

  74. F.G. Frobenius and L. Stickelberger, “Ñber die Addition und Multiplication der elliptischen Functionen,” J. Reine Angew. Math. 88 (1880), 146-184; reprinted in Frobenius' Gesammelte Abhandlungen (J.-P. Serre, ed.), Vol. 1, Springer-Verlag, Berlin, 1968, pp. 612-650.

    Google Scholar 

  75. M. Fulmek and C. Krattenthaler, “The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, II,” European J. Combin. 21 (2000), 601-640.

    Google Scholar 

  76. H. Garland, “Dedekind's-function and the cohomology of infinite dimensional Lie algebras,” Proc. Nat. Acad. Sci., U.S.A. 72 (1975), 2493-2495.

    Google Scholar 

  77. H. Garland and J. Lepowsky, “Lie algebra homology and the Macdonald-Kac formulas,” Invent. Math. 34 (1976), 37-76.

    Google Scholar 

  78. F. Garvan, private communication, March 1997.

  79. G. Gasper and M. Rahman, “Basic hypergeometric series,” in Encyclopedia of Mathematics and its Applications, Vol. 35 (G.-C. Rota, ed.), Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  80. J. Geronimus, “On some persymmetric determinants,” Proc. Roy. Soc. Edinburgh 50 (1930), 304-309.

    Google Scholar 

  81. J. Geronimus, “On some persymmetric determinants formed by the polynomials of M. Appell,” J. London Math. Soc. 6 (1931), 55-59.

    Google Scholar 

  82. I. Gessel and G. Viennot, “Binomial determinants, paths, and hook length formulae,” Adv. in Math. 58 (1985), 300-321.

    Google Scholar 

  83. F. Gesztesy and R. Weikard, “Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies-An analytic approach,” Bull. Amer. Math. Soc. (N.S.) 35 (1998), 271-317.

    Google Scholar 

  84. J.W.L. Glaisher, “On the square of the series in which the coefficients are the sums of the divisors of the exponents,” Mess. Math., New Series 14 (1884-85), 156-163; reprinted in J.W.L. Glaisher, Mathematical Papers, Chiefly Connected with the q-series in Elliptic Functions (1883-1885), Cambridge, W. Metcalfe and Son, Trinity Street, 1885, pp. 371-379.

    Google Scholar 

  85. J.W.L. Glaisher, “On the numbers of representations of a number as a sum of 2r squares, where 2r does not exceed eighteen,” Proc. London Math. Soc. 5(2) (1907), 479-490.

    Google Scholar 

  86. J.W.L. Glaisher, “On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares,” Quart. J. Pure and Appl. Math. Oxford 38 (1907), 1-62.

    Google Scholar 

  87. J.W.L. Glaisher, “On the representations of a number as the sum of fourteen and sixteen squares,” Quart. J. Pure and Appl. Math. Oxford 38 (1907), 178-236.

    Google Scholar 

  88. J.W.L. Glaisher, “On the representations of a number as the sum of eighteen squares,” Quart. J. Pure and Appl. Math. Oxford 38 (1907), 289-351.

    Google Scholar 

  89. M.L. Glasser, private communication, April 1996.

  90. M.L. Glasser and I.J. Zucker, Lattice Sums, Vol. 5 of Theoretical Chemistry: Advances and Perspectives (H. Eyring and D. Henderson, eds.), Academic Press, New York, 1980, pp. 67-139.

    Google Scholar 

  91. H.W. Gould, “Explicit formulas for Bernoulli numbers,” Amer. Math. Monthly 79 (1972), 44-51.

    Google Scholar 

  92. I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, John Wiley & Sons, New York, 1983.

    Google Scholar 

  93. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 4th edn., Academic Press, San Diego, 1980; translated from the Russian by Scripta Technica, Inc., and edited by A. Jeffrey.

    Google Scholar 

  94. E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, New York, 1985.

    Google Scholar 

  95. K.-B. Gundlach, “On the representation of a number as a sum of squares,” Glasgow Math. J. 19 (1978), 173-197.

    Google Scholar 

  96. R.A. Gustafson, “The Macdonald identities for affine root systems of classical type and hypergeometric series very well-poised on semi-simple Lie algebras,” in Ramanujan International Symposium on Analysis, Pune, India, Dec. 26-28, 1987 (N.K. Thakare, ed.), 1989, pp. 187-224.

  97. G.-N. Han, A. Randrianarivony, and J. Zeng, “Un autre q-analogue des nombres d'Euler,” Séminaire Lotharingien de Combinatoire 42(B42e) (1999), 22 pp.

    Google Scholar 

  98. G.-N. Han and J. Zeng, “q-Polynômes de Ghandi et statistique de Denert,” Discrete Math. 205 (1999), 119-143.

    Google Scholar 

  99. G.H. Hardy, “On the representation of a number as the sum of any number of squares, and in particular of five or seven,” Proc. Nat. Acad. Sci., U.S.A. 4 (1918), 189-193.

    Google Scholar 

  100. G.H. Hardy, “On the representation of a number as the sum of any number of squares, and in particular of five,” Trans. Amer. Math. Soc. 21 (1920), 255-284.

    Google Scholar 

  101. G.H. Hardy, Ramanujan, Cambridge University Press, Cambridge 1940; reprinted by Chelsea, New York, 1978; reprinted by AMS Chelsea, Providence, RI, 1999; Now distributed by The American Mathematical Society, Providence, RI.

    Google Scholar 

  102. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edn., Oxford University Press, Oxford, 1979.

    Google Scholar 

  103. J.B.H. Heilermann, “De transformatione serierum in fractiones continuas,” Dr. Phil. Dissertation, Royal Academy of Münster, 1845.

  104. J.B.H. Heilermann, “Ñber die Verwandlung der Reihen in Kettenbrüche,” J. Reine Angew. Math. 33 (1846), 174-188

    Google Scholar 

  105. H. Helfgott and I.M. Gessel, “Enumeration of tilings of diamonds and hexagons with defects,” Electron. J. Combin. 6(R16) (1999), 26 pp.

    Google Scholar 

  106. E. Hendriksen and H. Van Rossum, “Orthogonal moments,” Rocky Mountain J. Math. 21 (1991), 319-330.

    Google Scholar 

  107. L.K. Hua, Introduction to Number Theory, Springer-Verlag, New York, 1982.

    Google Scholar 

  108. J.G. Huard, Z.M. Ou, B.K. Spearman, and K.S. Williams, “Elementary evaluation of certain convolution sums involving divisor functions,” in Number Theory for the Millennium (M.A. Bennett, B.C. Berndt, N. Boston, H.G. Diamond, A.J. Hildebrand, and W. Philipp, eds.), Vol. 2, A.K. Peters, Natick, MA, to appear.

  109. M.E.H. Ismail, J. Letessier, G. Valent, and J. Wimp, “Two families of associated Wilson polynomials,” Canad. J. Math. 42 (1990), 659-695.

    Google Scholar 

  110. M.E.H. Ismail and D.R. Masson, “Generalized orthogonality and continued fractions,” J. Approx. Theory 83 (1995), 1-40.

    Google Scholar 

  111. M.E.H. Ismail and D.R. Masson, “Some continued fractions related to elliptic functions,” Continued Fractions: From Analytic Number Theory to Constructive Approximation, Columbia, MO, 1998 (B.C. Berndt and F. Gesztesy, eds.), Vol. 236 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 1999, 149-166.

    Google Scholar 

  112. M.E.H. Ismail and M. Rahman, “The associated Askey-Wilson polynomials,” Trans. Amer. Math. Soc. 328 (1991), 201-237.

    Google Scholar 

  113. M.E.H. Ismail and D. Stanton, “Classical orthogonal polynomials as moments,” Canad. J. Math. 49 (1997), 520-542.

    Google Scholar 

  114. M.E.H. Ismail and D. Stanton, “More orthogonal polynomials as moments,” Mathematical Essays in Honor of Gian-Carlo Rota, Cambridge, MA, 1996 (B.E. Sagan and R.P. Stanley, eds.), Vol. 161 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1998, pp. 377-396.

    Google Scholar 

  115. M.E.H. Ismail and G. Valent, “On a family of orthogonal polynomials related to elliptic functions,” Illinois J. Math. 42 (1998), 294-312.

    Google Scholar 

  116. M.E.H. Ismail, G. Valent, and G. Yoon, “Some orthogonal polynomials related to elliptic functions,” J. Approx. Theory 112 (2001), 251-278.

    Google Scholar 

  117. C.G.J. Jacobi, “Fundamenta Nova Theoriae Functionum Ellipticarum,” Regiomonti. Sumptibus fratrum Bornträger, 1829; reprinted in Jacobi's Gesammelte Werke, Vol. 1, Reimer, Berlin, 1881-1891, pp. 49-239; reprinted by Chelsea, New York, 1969; Now distributed by The American Mathematical Society, Providence, RI.

  118. N. Jacobson, Basic Algebra I, W.H. Freeman and Co., San Francisco, CA, 1974.

    Google Scholar 

  119. W.B. Jones and W.J. Thron, “Continued Fractions: Analytic Theory and Applications,” in Encyclopedia of Mathematics and Its Applications, Vol. 11 (G.-C. Rota, ed.), Addison-Wesley, London, 1980; Nowdistributed by Cambridge University Press, Cambridge.

    Google Scholar 

  120. V.G. Kac and M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory,” in Lie Theory and Geometry, in honor of Bertram Kostant (J.L. Brylinski, R. Brylinski, V. Guillemin and V. Kac, eds.), Vol. 123 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1994, pp. 415-456.

    Google Scholar 

  121. V.G. Kac and M. Wakimoto, “Integrable highest weight modules over affine superalgebras and Appell's function,” Comm. Math. Phys. 215 (2001), 631-682.

    Google Scholar 

  122. S. Karlin and G. Szeg?, “On certain determinants whose elements are orthogonal polynomials,” J. Analyse Math. 8 (1961), 1-157; reprinted in Gabor Szeg?: Collected Papers, Vol. 3 (R. Askey, ed.), Birkhäuser Boston, Inc., Boston, MA, 1982, pp. 603-762.

    Google Scholar 

  123. M.I. Knopp, “On powers of the theta-function greater than the eighth,” Acta Arith. 46 (1986), 271-283.

    Google Scholar 

  124. R. Koekoek and R.F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue,” TU Delft, The Netherlands, 1998; available on the www: ftp://ftp.twi.tudelft.nl/TWI/publications/ tech-reports/1998/DUT-TWI-98-17.ps.gz.

  125. C. Krattenthaler, “Advanced determinant calculus,” Séminaire Lotharingien de Combinatoire 42(B42q) (1999), 67 pp.

  126. E. Krätzel, “Ñber die Anzahl der Darstellungen von natürlichen Zahlen als Summe von 4k Quadraten,” Wiss. Z. Friedrich-Schiller-Univ. Jena 10 (1960/61), 33-37.

    Google Scholar 

  127. E. Krätzel, “Ñber die Anzahl der Darstellungen von nat¨urlichen Zahlen als Summe von 4k + 2 Quadraten,” Wiss. Z. Friedrich-Schiller-Univ. Jena 11 (1962), 115-120.

    Google Scholar 

  128. D.B. Lahiri, “On a type of series involving the partition function with applications to certain congruence relations,” Bull. Calcutta Math. Soc. 38 (1946), 125-132.

    Google Scholar 

  129. D.B. Lahiri, “On Ramanujan's function τ and the divisor function ?k (n)-I,” Bull. Calcutta Math. Soc. 38 (1946), 193-206.

    Google Scholar 

  130. D.B. Lahiri, “On Ramanujan's function τ and the divisor function ? k (n)-II,” Bull. Calcutta Math. Soc. 39 (1947), 33-52.

    Google Scholar 

  131. D.B. Lahiri, “Identities connecting the partition, divisor and Ramanujan's functions,” Proc. Nat. Inst. Sci. India 34A (1968), 96-103.

    Google Scholar 

  132. D.B. Lahiri, “Some arithmetical identities for Ramanujan's and divisor functions,” Bull. Austral. Math. Soc. 1 (1969), 307-314.

    Google Scholar 

  133. A. Lascoux, “Inversion des matrices de Hankel,” Linear Algebra Appl. 129 (1990), 77-102.

    Google Scholar 

  134. D.F. Lawden, Elliptic Functions and Applications, Vol. 80 of Applied Mathematical Sciences, Springer-Verlag, New York, 1989.

    Google Scholar 

  135. B. Leclerc, “On identities satisfied by minors of a matrix,” Adv. in Math. 100 (1993), 101-132.

    Google Scholar 

  136. B. Leclerc, “Powers of staircase Schur functions and symmetric analogues of Bessel polynomials,” Discrete Math. 153 (1996), 213-227.

    Google Scholar 

  137. B. Leclerc, Private communication, July 1997.

  138. B. Leclerc, “On certain formulas of Karlin and Szeg?,” Séminaire Lotharingien de Combinatoire 41(B41d) (1998), 21 pp.

  139. A.M. Legendre, “Traité des Fonctions Elliptiques et des Intégrales Euleriennes,” t. III, Huzard-Courcier, Paris, 1828, pp. 133-134.

    Google Scholar 

  140. D.H. Lehmer, “Some functions of Ramanujan,” Math. Student 27 (1959), 105-116.

    Google Scholar 

  141. J. Lepowsky, “Generalized Verma modules, loop space cohomology and Macdonald-type identities,” Ann. Sci. ´ Ecole Norm. Sup. 12(4) (1979), 169-234.

    Google Scholar 

  142. J. Lepowsky, “Affine Lie algebras and combinatorial identities,” in Lie Algebras and Related Topics, Rutgers Univ. Press., New Brunswick, N.J., 1981, Vol. 933 of Lecture Notes in Math., Springer-Verlag, Berlin 1982, pp. 130-156.

    Google Scholar 

  143. G.M. Lilly and S.C. Milne, “The C l Bailey Transform and Bailey Lemma,” Constr. Approx. 9 (1993), 473-500.

    Google Scholar 

  144. J. Liouville, “Extrait d'une lettre à M. Besge,” J. Math. Pures Appl. 9(2) (1864), 296-298.

    Google Scholar 

  145. D.E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, 2nd edn., Oxford University Press, Oxford, 1958.

    Google Scholar 

  146. Z.-G. Liu, “On the representation of integers as sums of squares,” in q-Series with Applications to Combinatorics, Number Theory, and Physics (B.C. Berndt and Ken Ono, eds.), Vol. 291 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 2001, pp. 163-176.

    Google Scholar 

  147. G.A. Lomadze, “On the representation of numbers by sums of squares,” Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 16 (1948), 231-275. (in Russian; Georgian summary).

    Google Scholar 

  148. J.S. Lomont and J.D. Brillhart, Elliptic Polynomials, Chapman & Hall/CRC Press, Boca Raton, FL, 2000.

    Google Scholar 

  149. L. Lorentzen and H. Waadeland, Continued Fractions With Applications, Vol. 3 of Studies in Computational Mathematics, North-Holland, Amsterdam, 1992.

    Google Scholar 

  150. J. Lützen, “Joseph Liouville 1809-1882: Master of pure and applied mathematics,” in Studies in the History of Mathematics and Physical Sciences, Vol. 15, Springer-Verlag, New York, 1990.

    Google Scholar 

  151. I.G. Macdonald, “Affine root systems and Dedekind's-function,” Invent. Math. 15 (1972), 91-143.

    Google Scholar 

  152. I.G. Macdonald, “Some conjectures for root systems,” SIAM J. Math. Anal. 13 (1982), 988-1007.

    Google Scholar 

  153. I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, Oxford, 1995.

    Google Scholar 

  154. G.B. Mathews, “On the representation of a number as a sum of squares,” Proc. London Math. Soc. 27 (1895-96), 55-60.

    Google Scholar 

  155. H. McKean and V. Moll, Elliptic Curves: Function Theory, Geometry, Arithmetic, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  156. M.L. Mehta, Elements of Matrix Theory, Hindustan Publishing Corp., Delhi, 1977.

    Google Scholar 

  157. M.L. Mehta, “Matrix theory: Selected topics and useful results,” Les Editions de Physique, Les Ulis, France, 1989; see Appendix A.5 (In India, sold and distributed by Hindustan Publishing Corp.).

    Google Scholar 

  158. S.C. Milne, “An elementary proof of the Macdonald identities for A (1) l ,” Adv. in Math. 57 (1985), 34-70.

    Google Scholar 

  159. S.C. Milne, “Basic hypergeometric series very well-poised in U(n),” J. Math. Anal. Appl. 122 (1987), 223-256.

    Google Scholar 

  160. S.C. Milne, “Classical partition functions and the U(n + 1) Rogers-Selberg identity,” Discrete Math. 99 (1992), 199-246.

    Google Scholar 

  161. S.C. Milne, “The C l Rogers-Selberg identity,” SIAM J. Math. Anal. 25 (1994), 571-595.

    Google Scholar 

  162. S.C. Milne, “New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan's tau function,” Proc. Nat. Acad. Sci., U.S.A. 93 (1996), 15004-15008.

    Google Scholar 

  163. S.C. Milne, “Balanced 3 ? 2 summation theorems for U(n) basic hypergeometric series,” Adv. in Math. 131 (1997), 93-187.

    Google Scholar 

  164. S.C. Milne, “Hankel determinants of Eisenstein series,” in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics, Gainesville, 1999 (F.G. Garvan and M. Ismail, eds.), Vol. 4 of Dev. Math., Kluwer Academic Publishers, Dordrecht, 2001, pp. 171-188.

    Google Scholar 

  165. S.C. Milne, “A new formula for Ramanujan's tau function and the Leech lattice,” in preparation.

  166. S.C. Milne, “Continued fractions, Hankel determinants, and further identities for powers of classical theta functions,” in preparation.

  167. S.C. Milne, “Sums of squares, Schur functions, and multiple basic hypergeometric series,” in preparation.

  168. S.C. Milne and G.M. Lilly, “The A l and C l Bailey transform and lemma,” Bull. Amer. Math. Soc. (N.S.) 26 (1992), 258-263.

    Google Scholar 

  169. S.C. Milne and G.M. Lilly, “Consequences of the A l and C l Bailey transform and Bailey lemma,” Discrete Math. 139 (1995), 319-346.

    Google Scholar 

  170. S.C. Mitra, “On the expansion of the Weierstrassian and Jacobian elliptic functions in powers of the argument,” Bull. Calcutta Math. Soc. 17 (1926), 159-172.

    Google Scholar 

  171. L.J. Mordell, “On Mr. Ramanujan's empirical expansions of modular functions,” Proc. Cambridge Philos. Soc. 19 (1917), 117-124.

    Google Scholar 

  172. L.J. Mordell, “On the representation of numbers as the sum of 2r squares,” Quart. J. Pure and Appl. Math. Oxford 48 (1917), 93-104.

    Google Scholar 

  173. L.J. Mordell, “On the representations of a number as a sum of an odd number of squares,” Trans. Cambridge Philos. Soc. 22 (1919), 361-372.

    Google Scholar 

  174. T. Muir, “New general formulae for the transformation of infinite series into continued fractions,” Trans. Roy. Soc. Edinburgh 27 (1872-1876; see Part IV. 1875-76), 467-471.

    Google Scholar 

  175. T. Muir, “On the transformation of Gauss' hypergeometric series into a continued fraction,” Proc. London Math. Soc. 7 (1876), 112-119.

    Google Scholar 

  176. T. Muir, “On Eisenstein's continued fractions,” Trans. Roy. Soc. Edinburgh 28 (1876-1878; see Part I. 1876-1877), 135-143.

    Google Scholar 

  177. T. Muir, The Theory of Determinants in the Historical Order of Development, Vol. I (1906), Vol. II (1911), Vol. III (1920), Vol. IV (1923), Macmillan and Co., Ltd., London.

    Google Scholar 

  178. T. Muir, “The theory of persymmetric determinants in the historical order of development up to 1860,” Proc. Roy. Soc. Edinburgh 30 (1910), 407-431.

    Google Scholar 

  179. T. Muir, “The theory of persymmetric determinants from 1894 to 1919,” Proc. Roy. Soc. Edinburgh 47 (1926-27), 11-33.

    Google Scholar 

  180. T. Muir, Contributions to the History of Determinants 1900-1920, Blackie & Son, London and Glasgow, 1930.

    Google Scholar 

  181. T. Muir, A Treatise on the Theory of Determinants, Dover Publications, New York, 1960.

    Google Scholar 

  182. M.B. Nathanson, Elementary Methods in Number Theory, Vol. 195 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.

    Google Scholar 

  183. K. Ono, “Representations of integers as sums of squares,” J. Number Theory, to appear.

  184. K. Ono, S. Robins, and P.T. Wahl, “On the representation of integers as sums of triangular numbers,” Aequationes Math. 50 (1995), 73-94.

    Google Scholar 

  185. O. Perron, Die Lehre von den Kettenbrüchen, 2nd edn., B.G. Teubner, Leipzig and Berlin, 1929; reprinted by Chelsea, New York, 1950.

    Google Scholar 

  186. Von K. Petr, “Ñber die Anzahl der Darstellungen einer Zahl als Summe von zehn und zwölf Quadraten,” Archiv Math. Phys. 11(3) (1907), 83-85.

    Google Scholar 

  187. B. van der Pol, “The representation of numbers as sums of eight, sixteen and twenty-four squares,” Nederl. Akad.Wetensch. Proc. Ser. A 57 (1954), 349-361; Nederl. Akad. Wetensch. Indag. Math. 16 (1954), 349-361.

    Google Scholar 

  188. G. Prasad, An Introduction to the Theory of Elliptic Functions and Higher Transcendentals, University of Calcutta, 1928.

  189. H. Rademacher, Topics in Analytic Number Theory, Vol. 169 of Grundlehren Math. Wiss., Springer-Verlag, New York, 1973.

    Google Scholar 

  190. Ch. Radoux, “Calcul effectif de certains déterminants de Hankel,” Bull. Soc. Math. Belg. Sér B 31 (1979), 49-55.

    Google Scholar 

  191. Ch. Radoux, “Déterminant de Hankel construit sur les polynômes de Hérmite,” Ann. Soc. Sci. Bruxelles Sér. I 104 (1990), 59-61.

    Google Scholar 

  192. Ch. Radoux, “Déterminant de Hankel construit sur des polynômes liés aux nombres de d´erangements,” European J. Combin. 12 (1991), 327-329.

    Google Scholar 

  193. Ch. Radoux, “Déterminants de Hankel et théorème de Sylvester,” Actes de la 28e session du Séminaire Lotharingien de Combinatoire, publication de l'I.R.M.A. No. 498/S-28, Strasbourg, 1992, pp. 115-122.

  194. S. Ramanujan, “On certain arithmetical functions,” Trans. Cambridge Philos. Soc. 22 (1916), 159-184; reprinted in Collected Papers of Srinivasa Ramanujan, Chelsea, New York, 1962, pp. 136-162; reprinted by AMS Chelsea, Providence, RI, 2000; Now distributed by The American Mathematical Society, Providence, RI.

    Google Scholar 

  195. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.

    Google Scholar 

  196. A. Randrianarivony, “Fractions continues, combinatoire et extensions de nombres classiques,” Ph.D. Thesis, Univ. Louis Pasteur, Strasbourg, France, 1994.

    Google Scholar 

  197. A. Randrianarivony, “Fractions continues, q-nombres de Catalan et q-polynômes de Genocchi,” European J. Combin. 18 (1997), 75-92.

    Google Scholar 

  198. A. Randrianarivony, “q, p-analogue des nombres de Catalan,” Discrete Math. 178 (1998), 199-211.

    Google Scholar 

  199. A. Randrianarivony and J.A. Zeng, “Extension of Euler numbers and records of up-down permutations,” J. Combin. Theory Ser. A 68 (1994), 86-99.

    Google Scholar 

  200. A. Randrianarivony and J. Zeng, “A family of polynomials interpolating several classical series of numbers,” Adv. in Appl. Math. 17 (1996), 1-26.

    Google Scholar 

  201. R.A. Rankin, “On the representations of a number as a sum of squares and certain related identities,” Proc. Cambridge Philos. Soc. 41 (1945), 1-11.

    Google Scholar 

  202. R.A. Rankin, “On the representation of a number as the sum of any number of squares, and in particular of twenty,” Acta Arith. 7 (1962), 399-407.

    Google Scholar 

  203. R.A. Rankin, “Sums of squares and cusp forms,” Amer. J. Math. 87 (1965), 857-860.

    Google Scholar 

  204. R.A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge, 1977.

    Google Scholar 

  205. D. Redmond, Number Theory: An Introduction, Marcel Dekker, New York, 1996.

    Google Scholar 

  206. D.P. Robbins, “Solution to problem 10387*,” Amer. Math. Monthly 104 (1997), 366-367.

    Google Scholar 

  207. L.J. Rogers, “On the representation of certain asymptotic series as convergent continued fractions,” Proc. London Math. Soc 4(2) (1907), 72-89.

    Google Scholar 

  208. A. Schett, “Properties of the Taylor series expansion coefficients of the Jacobian elliptic functions,” Math. Comp. 30 (1976), 143-147, with microfiche supplement (See also: “Corrigendum,” Math. Comp. 31 (1977), 330).

    Google Scholar 

  209. A. Schett, “Recurrence formula of the Taylor series expansion coefficients of the Jacobian elliptic functions,” Math. Comp. 31 (1977), 1003-1005, with microfiche supplement.

    Google Scholar 

  210. W. Seidel, “Note on a persymmetric determinant,” Quart. J. Math., Oxford Ser. 4(2) (1953), 150-151.

    Google Scholar 

  211. J.-P. Serre, A Course in Arithmetic, Vol. 7 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1973.

    Google Scholar 

  212. W. Sierpinski, “Wzór analityczny na pewna funkcje liczbowa (Une formule analytique pour une fonction num´erique),” Wiadomo´sci Matematyczne Warszawa 11 (1907), 225-231 (in Polish).

    Google Scholar 

  213. H.J.S. Smith, Report on the Theory of Numbers, Part VI (Report of the British Association for 1865, pp. 322-375), 1894; reprinted in The Collected Mathematical Papers of H.J.S. Smith, Vol. 1 (J.W.L. Glaisher, ed.), 1894, pp. 306-311; reprinted by Chelsea, New York, 1965.

  214. H.J.S. Smith, “On the orders and genera of quadratic forms containing more than 3 indeterminates,” Proc. Roy. Soc. London 16 (1867), 197-208; reprinted in The Collected Mathematical Papers of H.J.S. Smith, Vol. 1 (J.W.L. Glaisher, ed.), 1894, pp. 510-523; reprinted by Chelsea, New York, 1965.

    Google Scholar 

  215. R.P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth & Brooks Cole, Belmont, CA, 1986.

    Google Scholar 

  216. M.A. Stern, “Theorie der Kettenbrüche und ihre Anwendung,” J. Reine Angew. Math. 10 (1833), 1-22, 154-166, 241-274, 364-376.

    Google Scholar 

  217. M.A. Stern, “Theorie der Kettenbrüche und ihre Anwendung,” J. Reine Angew. Math. 11 (1834), 33-66, 142-168, 277-306, 311-350.

    Google Scholar 

  218. T.J. Stieltjes, “Sur la réduction en fraction continue d'une série procédant suivant les puissances descendantes d'une variable,” Ann. Fac. Sci. Toulouse 3 (1889), H. 1-17; reprinted in Œuvres Complétes T2, P. Noordhoff, Groningen, 1918, pp. 184-200; see also Œuvres Complètes (Collected Papers), Vol. II (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 188-204.

    Google Scholar 

  219. T.J. Stieltjes, “Sur quelques intégrales définies et leur développement en fractions continues,” Quart. J. Math. 24 (1890), 370-382; reprinted in Œuvres Complètes T2, P. Noordhoff, Groningen, 1918, pp. 378-391; see alsoŒuvres Complètes (Collected Papers) Vol. II (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 382-395.

    Google Scholar 

  220. T.J. Stieltjes, “Recherches sur les fractions continues,” Ann. Fac. Sci. Toulouse 8 (1894), J. 1-122, 9 (1895), A. 1-47; reprinted inŒuvres Complètes T2, P. Noordhoff, Groningen, 1918, pp. 402-566; (see pp. 549-554); see also Œuvres Complètes (Collected Papers), Vol. II (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 406-570 (see also pp. 609-745 for an English translation. Note especially pp. 728-733).

    Google Scholar 

  221. O. Szász, “Ñber Hermitesche Formen mit rekurrierender Determinante und über rationale Polynome,” Math. Z. 11 (1921), 24-57.

    Google Scholar 

  222. G. Szeg?, “On an inequality of Turán concerning Legendre polynomials,” Bull. Amer. Math. Soc. 54 (1948), 401-405; reprinted in Gabor Szeg?: Collected Papers, Vol. 3, 1945-1972 (R. Askey, ed.), Birkhäuser Boston, Inc., Boston, MA, 1982, pp. 69-73, 74-75.

    Google Scholar 

  223. O. Taussky, “Sums of squares,” Amer. Math. Monthly 77 (1970), 805-830.

    Google Scholar 

  224. J. Touchard, “Sur un probléme de configurations et sur les fractions continues,” Canad. J. Math. 4 (1952), 2-25.

    Google Scholar 

  225. P. Turán, “On the zeros of the polynomials of Legendre,”Časopis pro P?stováni Matematiky a Fysiky 75 (1950), 113-122.

    Google Scholar 

  226. H.W. Turnbull, The Theory of Determinants, Matrices, and Invariants, Blackie and Son, London, 1928; reprinted by Dover Publications, New York, 1960.

    Google Scholar 

  227. J.V. Uspensky, “Sur la représentation des nombres par les sommes des carrés,” Communications de la Sociétè mathématique de Kharkow série 2 14 (1913), 31-64 (in Russian).

  228. J.V. Uspensky, “Note sur le nombre de représentations des nombres par une somme d'un nombre pair de carrés,” Bulletin de l'Académie des Sciences de l'URSS, Leningrad (Izvestija Akademii Nauk Sojuza Sovetskich Respublik. Leningrad.) Serie 6 19 (1925), 647-662 (in French).

    Google Scholar 

  229. J.V. Uspensky, “On Jacobi's arithmetical theorems concerning the simultaneous representation of numbers by two different quadratic forms,” Trans. Amer. Math. Soc. 30 (1928), 385-404.

    Google Scholar 

  230. J.V. Uspensky and M.A. Heaslet, Elementary Number Theory, McGraw-Hill, New York, 1939.

    Google Scholar 

  231. G. Valent, “Asymptotic analysis of some associated orthogonal polynomials connected with elliptic functions,” SIAM J. Math. Anal. 25 (1994), 749-775.

    Google Scholar 

  232. G. Valent, “Associated Stieltjes-Carlitz polynomials and a generalization of Heun's differential equation,” J. Comput. Appl. Math. 57 (1995), 293-307.

    Google Scholar 

  233. G. Valent and W. Van Assche, “The impact of Stieltjes' work on continued fractions and orthogonal polynomials: Additional material,” J. Comput. Appl. Math. 65 (1995), 419-447; this volume was devoted to the Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions (Delft, 1994).

    Google Scholar 

  234. W. Van Assche, “Asymptotics for orthogonal polynomials and three-term recurrences,” in Orthogonal Polynomials: Theory and Practice (P. Nevai, ed.), Vol. 294 of NATO-ASI Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers, Dordrecht, 1990, pp. 435-462.

    Google Scholar 

  235. W. Van Assche, “The impact of Stieltjes work on continued fractions and orthogonal polynomials,” Vol. I of T.J. Stieltjes: Œuvres Complètes (Collected Papers) (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 5-37.

    Google Scholar 

  236. P.R. Vein, “Persymmetric determinants. I. The derivatives of determinants with Appell function elements,” Linear and Multilinear Algebra 11 (1982), 253-265.

    Google Scholar 

  237. P.R. Vein, “Persymmetric determinants. II. Families of distinct submatrices with nondistinct determinants,” Linear and Multilinear Algebra 11 (1982), 267-276.

    Google Scholar 

  238. P.R. Vein, “Persymmetric determinants. III. A basic determinant,” Linear and Multilinear Algebra 11 (1982), 305-315.

    Google Scholar 

  239. P.R. Vein, “Persymmetric determinants. IV. An alternative form of the Yamazaki-Hori determinantal solution of the Ernst equation,” Linear and Multilinear Algebra 12 (1982/83), 329-339.

    Google Scholar 

  240. P.R. Vein, “Persymmetric determinants. V. Families of overlapping coaxial equivalent determinants,” Linear and Multilinear Algebra 14 (1983), 131-141.

    Google Scholar 

  241. P.R. Vein and P. Dale, “Determinants, their derivatives and nonlinear differential equations,” J. Math. Anal. Appl. 74 (1980), 599-634.

    Google Scholar 

  242. B.A. Venkov, Elementary Number Theory, Wolters-Noordhoff Publishing, Groningen, 1970; translated from the Russian and edited by Helen Alderson (Popova).

    Google Scholar 

  243. R. Vermes, “Hankel determinants formed from successive derivatives,” Duke Math. J. 37 (1970), 255-259.

    Google Scholar 

  244. G. Viennot, “Une interprétation combinatoire des coefficients des développements en série entière des fonctions elliptiques de Jacobi,” J. Combin. Theory Ser. A 29 (1980), 121-133.

    Google Scholar 

  245. G. Viennot, “Une théorie combinatoire des polynômes orthogonaux généraux,” in Lecture Notes, publication de l'UQAM, Montréal (1983).

    Google Scholar 

  246. G. Viennot, “A combinatorial interpretation of the quotient-difference algorithm,” Technical Report No. 8611, Université de Bordeaux I, 1986.

  247. A.Z. Walfisz, “On the representation of numbers by sums of squares: Asymptotic formulas,” Uspehi Mat. Nauk (N.S.) 52(6) (1952), 91-178 (in Russian); English transl. in Amer. Math. Soc. Transl. 3(2) (1956), 163-248.

    Google Scholar 

  248. H.S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand, New York, 1948; reprinted by Chelsea, New York, 1973.

    Google Scholar 

  249. J.B. Walton, “Theta series in the Gaussian field,” Duke Math. J. 16 (1949), 479-491.

    Google Scholar 

  250. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th edn., Cambridge University Press, Cambridge, 1927.

    Google Scholar 

  251. S. Wolfram, The Mathematica Book, 4th edn., Wolfram Media/Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  252. S. Wrigge, “Calculation of the Taylor series expansion coefficients of the Jacobian elliptic function sn(x, k),” Math. Comp. 36 (1981), 555-564.

    Google Scholar 

  253. S. Wrigge, “A note on the Taylor series expansion coefficients of the Jacobian elliptic function sn(x, k),” Math. Comp. 37 (1981), 495-497.

    Google Scholar 

  254. D. Zagier, “A proof of the Kac-Wakimoto affine denominator formula for the strange series,” Math. Res. Letters 7 (2000), 597-604.

    Google Scholar 

  255. D. Zeilberger, “Proof of the alternating sign matrix conjecture,” Electron. J. Combin. 3(R13) (1996), 84 pp.

    Google Scholar 

  256. D. Zeilberger, “Proof of the refined alternating sign matrix conjecture,” New York J. Math. 2 (1996), 59-68.

    Google Scholar 

  257. J. Zeng, “Énumérations de permutations et J-fractions Continues,” European J. Combin. 14 (1993), 373-382.

    Google Scholar 

  258. J. Zeng, “Sur quelques propriétes de symétrie des nombres de Genocchi,” Discrete Math. 153 (1996), 319-333.

    Google Scholar 

  259. I. J. Zucker, “The summation of series of hyperbolic functions,” SIAM J. Math. Anal. 10 (1979), 192-206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milne, S.C. Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions. The Ramanujan Journal 6, 7–149 (2002). https://doi.org/10.1023/A:1014865816981

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014865816981

Navigation