Skip to main content
Log in

A Particle Method for the KdV Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We extend the dispersion-velocity particle method that we recently introduced to advection models in which the velocity does not depend linearly on the solution or its derivatives. An example is the Korteweg de Vries (KdV) equation for which we derive a particle method and demonstrate numerically how it captures soliton–soliton interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Beale, J. T., and Majda, A. (1985). High order accurate vortex methods with explicit velocity kernels. J. Comput. Phys. 58, 188–208.

    Google Scholar 

  2. Chertock, A., and Levy, D. (2001). Particle methods for dispersive equations. J. Comput. Phys. 171, 708–730.

    Google Scholar 

  3. Chorin, A. J. (1973). Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796.

    Google Scholar 

  4. Chorin, A. J. (1995). Vortex methods. In Computational Fluid Dynamics, Les Houches Summer School of Theoretical Physics, Vol. 59, Elsevier, pp. 67–108.

  5. Cottet, G.-H., and Koumoutsakos, P. D. (2000). Vortex Methods, Cambridge University Press, Cambridge.

    Google Scholar 

  6. Degond, P., and Mustieles F. J. (1990). A deterministic approximation of diffusion equations using particles. SIAM J. Sci. Statist. Comp. 11(2), 293–310.

    Google Scholar 

  7. Drazin, P. G., and Johnson, R. S. (1989). Solitons: An Introduction, Cambridge University Press, Cambridge.

    Google Scholar 

  8. Gustafson, K., and Sethian, J. (eds.) (1991). Vortex Methods and Vortex Motion, SIAM, Philadelphia.

    Google Scholar 

  9. Infeld, E., and Rowlands, G. (2000). Nonlinear Waves, Solitons and Chaos, 2nd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  10. Korteweg, D. J., and de Vries, G. (1895). On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 39, 422–443.

    Google Scholar 

  11. Lacombe, G. Analyse d'une équation de vitesse de diffusion, preprint.

  12. Lacombe, G., and Mas-Gallic, S. (1999). Presentation and Analysis of a Diffusion-Velocity Method, ESAIM, Proceedings, Vol. 7, pp. 225–233.

    Google Scholar 

  13. Mas-Gallic, S., and Lions, P.-L. (2001). Une méthode particulaire déterministe pour des équations diffusives non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 332(4), 369–376.

    Google Scholar 

  14. Nordmark, H. O. (1991). Rezoning of higher order vortex methods. J. Comput. Phys. 97, 366–397.

    Google Scholar 

  15. Puckett, E. G. (1993). Vortex methods: An introduction and survey of selected research topics. In Gunzburger, M. D., and Nicolaides, R. A. (eds.), Incompressible Computational Fluid Dynamics Trends and Advances, Cambridge University Press, pp. 335–407.

  16. Raviart, P. A. (1983). An analysis of particle methods. In Brezzi, F. (ed.), Numerical Methods in Fluid Dynamics, Lecture Notes in Mathematics, Vol. 1127, Springer-Verlag, Berlin, New York.

    Google Scholar 

  17. Rosenau, P., and Hyman, J. M. (1993). Compactons: Solitons with finite wavelength. Phys. Rev. Let. 70(5), 564–567.

    Google Scholar 

  18. Zabusky, N. J. (1967). A synergetic approach to problems of nonlinear dispersive wave propagation and interaction. In Ames, W. F. (ed.), Nonlinear Partial Differential Equations, Academic Press, New York, pp. 223–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chertock, A., Levy, D. A Particle Method for the KdV Equation. Journal of Scientific Computing 17, 491–499 (2002). https://doi.org/10.1023/A:1015106210404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015106210404

Navigation