Skip to main content
Log in

Drap brownien fractionnaire

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

On définit un processus à deux indices α et β par intégration fractionnaire d'un bruit blanc. On démontre qu'il est auto-similaire et à accroissements stationnaires, les accroissements étant rectangulaires. On donne quelques propriétés de régularité des trajectoires et la continuité du processus par rapport aux deux paramètres. On obtient un champ aléatoire gaussien de même loi que celui proposé par Anna Kamont, mais notre définition permet de montrer d'autres propriétés, en particulier trajectorielles, et conduit plus aisément à des algorithmes de simulation de tels champs.

A random field depending on two parameters α and β is defined by a fractional integration with respect to the white noise field. Such a process is autosimilar with stationary rectangular increments. The paths have some regular properties, and the process has a sort of regularity with respect of the parameters. The process has the same law as that of Anna Kamont. However, our definition allows to prove some others properties, particularly paths properties, and gives easily simulation algorithms of such of fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R.J.: The Geometry of Random Fields, Wiley, 1981.

  2. Ayache, A. and Léger, S.: 'Fractional and multifractional Brownian motion', Preprint, 2000.

  3. Ciesielski, Z. and Kamont, A.: 'Levy's fractional Brownian random field and function spaces', Acta Sci. Math. 60 (1995), 99–118.

    Google Scholar 

  4. Cramer, H. and Leadbetter, M.R.: Stationary and Related Stochastic Processes, Wiley, New York, 1967.

    Google Scholar 

  5. Feyel, D. and De La Pradelle, A.: 'Fractional integrals and Brownian processes', Potential Anal. 10(3) (1999), 273–288.

    Google Scholar 

  6. Kamont, A.: 'On the fractionnal anisotropic Wiener field', Probab. Math. Statist. 16(1) (1996), 85–98.

    Google Scholar 

  7. Karatzas, I. and Shreve, S.: Brownian Motion and Stochastic Calculus, Springer-Verlag, 1988.

  8. Léger, S. and Pontier, M.: 'Drap brownien fractionnaire', C.R. Acad. Sci. Paris Sér. I Math. 329 (1999), 893–898.

    Google Scholar 

  9. Lindstrom, T.: 'Fractional Brownian fields as integrals of white noise', Bull. London Math. Soc. 25 (1993), 83–88.

    Google Scholar 

  10. Mandelbrot, B.B. and Van Ness, J.W.: 'Fractional Brownian motion, fractional noises and applications', SIAM Rev. 10 (1968), 422–437.

    Google Scholar 

  11. Walsh, J.B.: 'An introduction to stochastic partial differential equations', in Ecole d'été de probabilités de Saint Flour 1984, Lecture Note 1180, Springer-Verlag, Berlin, 1986, pp. 265–437.

    Google Scholar 

  12. Wong, E. and Zakai, M.: 'Martingales and stochastics integrals for processes with a multidimensional parameter', Zeit. Wahrsch. 29 (1974), 109–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayache, A., Leger, S. & Pontier, M. Drap brownien fractionnaire. Potential Analysis 17, 31–43 (2002). https://doi.org/10.1023/A:1015260803576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015260803576

Navigation