Skip to main content
Log in

Comparison of Twisted P-Form Spectra for Flat Manifolds with Diagonal Holonomy

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We give an explicit formula for the multiplicities of the eigenvalues ofthe Laplacian acting on sections of natural vector bundles over acompact flat Riemannian manifold M Γ = Γ\ℝn,Γ a Bieberbach group. In the case of the Laplacian acting onp-forms, twisted by a unitary character of Γ, when Γ hasdiagonal holonomy group F ≃ ℤ2 k, these multiplicities have acombinatorial expression in terms of integral values of Krawtchoukpolynomials and the so called Sunada numbers. If the Krawtchoukpolynomial K p n(x)does not have an integral root, this expressioncan be inverted and conversely, the presence of such roots allows toproduce many examples of p-isospectral manifolds that are notisospectral on functions. We compare the notions of twistedp-isospectrality, twisted Sunada isospectrality and twisted finitep-isospectrality, a condition having to do with a finite part of thespectrum, proving several implications among them and getting a converseto Sunada's theorem in our context, for n ≤ 8. Furthermore, a finitepart of the spectrum determines the full spectrum. We give new pairs ofnonhomeomorphic flat manifolds satisfying some kind of isospectralityand not another. For instance: (a) manifolds which are isospectral onp-forms for only a few values of p ≠ 0, (b) manifolds which aretwisted isospectral for every χ, a nontrivial character of F, and(c) large twisted isospectral sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Brown H., Bülow R., Neubüser J., Wondratschok H. and Zassenhaus H.: Crystallographic Groups of Four-Dimensional Space, Wiley, New York, 1978.

    Google Scholar 

  2. Bérard, P.: FrTransplantation et isospectralité I, Math. Ann. 292 (1992), 547–559.

    Google Scholar 

  3. Büser, P. and Courtois, G.: Finite parts of the spectrum of a Riemann surface, Math. Ann. 287 (1990), 523–530.

    Google Scholar 

  4. Cobb, P.: Manifolds with holonomy group ℤ2⊕ ℤ2and first Betti number zero, J. Differential Geom. 10 (1975), 221–224.

    Google Scholar 

  5. Charlap, L.: Bieberbach Groups and Flat Manifolds, Springer, New York, 1988.

    Google Scholar 

  6. Chihara, L. and Stanton, D.: Zeros of generalized Krawtchouk polynomials, J. Approx. Theory 60 (1990), 43–57.

    Google Scholar 

  7. Dai, X. and Wei, G.: Finite part of the spectrum and isospectrality, Contemp. Math. 173 (1994), 99–107.

    Google Scholar 

  8. DeTurck, D. and Gordon, C.: Isospectral deformations I: Riemannian structures on two-step nilspaces, Comm. Pure Appl. Math. 40 (1987), 367–387.

    Google Scholar 

  9. DeTurck, D. and Gordon, C.: Isospectral deformations II: Trace formulas, metrics, and potentials, Comm. Pure Appl. Math. 42 (1989), 1067–1095.

    Google Scholar 

  10. Dotti, I. and Miatello, R.: Isospectral compact flat manifolds, Duke Math. J. 68 (1992), 489–498.

    Google Scholar 

  11. Eskin, G., Ralston, J. and Trubowitz, E.: On isospectral periodic potentials in ℝn, Comm. Pure Appl. Math. 37 (1984), 647–676 (part I), 715-753 (part II).

    Google Scholar 

  12. Gilkey, P.: On spherical space forms with metacyclic fundamental group which are isospectral but not equivarianly cobordant Compositio Math. 56 (1985), 171–200.

    Google Scholar 

  13. Gordon, C.: Riemannian manifolds isospectral on functions but not on 1-forms, J. Differential Geom. 24 (1986), 79–96.

    Google Scholar 

  14. Gordon, C.: Survey of isospectral manifolds, in: F. J. E. Dillen and L. C. A. Verstraeten (eds), Handbook of Differential Geometry, Vol. 1, Elsevier, Amsterdam, 2000, pp. 747–778.

    Google Scholar 

  15. Gordon, C., Ouyang, H. and Schueth, D.: Distinguishing isospectral nilmanifolds by bundle Laplacians, Math. Res. Lett. 4 (1997), 23–33.

    Google Scholar 

  16. Gornet, R.: Continuous families of Riemannian manifolds, isospectral on functions but not on 1-forms, J. Geom. Anal. 10(2) (2000), 281–298.

    Google Scholar 

  17. Ikeda, A.: Riemannian manifolds p-isospectral but not p + 1-isospectral, Perspect. Math. 8 (1988), 159–184.

    Google Scholar 

  18. Krasikov, I. and Litsyn, S.: On integral zeros of Krawtchouk polynomials J. Combin. Theory A 74 (1996), 71–99.

    Google Scholar 

  19. Miatello, R. and Rossetti, J. P.: Isospectral Hantzsche-Wendt manifolds, J. Reine Angew. Math. 515 (1999), 1–23.

    Google Scholar 

  20. Miatello, R. and Rossetti, J. P.: Hantzsche-Wendt manifolds of dimension 7, in: I. Kolár, O. Kowalski, D. Krupka and J. Slovak (eds), Differential Geometry and Applications, Proc. 7th Internat. Conference, Masaryk Univ., Brno, 1999, pp. 379-390.

  21. Miatello, R. and Rossetti, J. P.: Flat manifolds isospectral on p-forms, J. Geom. Anal. 11 (2001), 647–665.

    Google Scholar 

  22. Pesce, H.: FrUne reciproque générique du theorème de Sunada, Compositio Math. 109 (1997), 357–365.

    Google Scholar 

  23. Pesce, H.: FrVariétés hyperboliques et elliptiques fortement isospectrales, J. Funct. Anal. 134 (1995), 363–391.

    Google Scholar 

  24. Roman, S.: Coding and Information Theory, Springer, New York, 1992.

    Google Scholar 

  25. Rossetti, J. P. and Tirao, P.: Five-dimensional Bieberbach groups with holonomy group ℤ2⊕ ℤ2, Geom. Dedicata 77 (1999), 149–172.

    Google Scholar 

  26. Schueth, D.: Line bundle Laplacians over isospectral nilmanifolds, Trans. Amer. Math. Soc. 349 (1997), 3787–3802.

    Google Scholar 

  27. Schueth, D.: Continuous families of isospectral metrics on simply connected manifolds, Ann. of Math. 149 (1999), 287–308.

    Google Scholar 

  28. Sunada, T.: Riemannian coverings and isospectral manifolds, Ann. of Math. 121 (1985), 169–186.

    Google Scholar 

  29. Van Lint, J. H. and Wilson, R. M.: A Course in Combinatorics, Cambridge Univ. Press, Cambridge, 1992.

    Google Scholar 

  30. Wolf, J.: Spaces of Constant Curvature, McGraw-Hill, New York, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miatello, R.J., Rossetti, J.P. Comparison of Twisted P-Form Spectra for Flat Manifolds with Diagonal Holonomy. Annals of Global Analysis and Geometry 21, 341–376 (2002). https://doi.org/10.1023/A:1015651821995

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015651821995

Navigation