Skip to main content
Log in

Geometric Analysis for Symmetric Fleming–Viot Operators: Rademacher's Theorem and Exponential Families

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We use the natural geometry of a symmetric Fleming–Viot operator ℒ to obtain analytical descriptions of the corresponding Dirichlet space (E,D(E)). In particular, we give a complete characterization of functions in D(E) in terms of their differentiability properties along exponential families. Moreover, we prove a Rademacher theorem stating that any function which is Lipschitz continuous with respect to the Bhattacharya distance is contained in D(E) and possesses a bounded gradient. A converse to this statement is also given. Thus, we relate the Bhattacharya distance to the potential theory of ℒ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albeverio, S., Kondratiev, Yu.G. and Röckner, M.: 'Analysis and geometry on configuration spaces', J. Funct. Anal. 154(2) (1998), 444-500.

    Google Scholar 

  2. Albeverio, S., Kondratiev, Yu.G. and Röckner, M.: 'Analysis and geometry on configuration spaces: The Gibbsian case', J. Funct. Anal. 157(1) (1998), 242-291.

    Google Scholar 

  3. Amari, S.: Differential-Geometrical Methods in Statistics, Lecture Notes in Statist. 28, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  4. Bogachev, V.I. and Mayer-Wolf, E.: 'Some remarks on Rademacher's theorem in infinite dimensions', Potential Anal. 5 (1996), 23-30.

    Google Scholar 

  5. Cheeger, J.: 'Differentiability of Lipschitz functions on metric measure spaces', GAFA, Geom. Funct. Anal. 9 (1999), 418-517.

    Google Scholar 

  6. Dawson, D.A.: 'Measure-valued Markov processes', in Ecole d'Eté de Probabilités de Saint-Flour XXI, Lecture Notes in Math. 1541, Springer, Berlin, 1993, pp. 1-260.

    Google Scholar 

  7. Enchev, O. and Stroock, D.: 'Rademacher's theorem for Wiener functionals', Ann. Probab. 21 (1993), 25-33.

    Google Scholar 

  8. Ethier, S. and Kurtz, T.: 'Fleming-Viot processes in population genetics', SIAM J. Control Optim. 31(2) (1993), 345-386.

    Google Scholar 

  9. Ethier, S. and Kurtz, T.: Markov Processes. Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics,Wiley, New York, 1986.

    Google Scholar 

  10. Friedrich, T.: 'Die Fisher-Information und symplektische Strukturen', Math. Nachr. 153 (1991), 273-296.

    Google Scholar 

  11. Handa, K.: Quasi-invariance and reversibility in the Fleming-Viot process, Preprint, Saga University, 1999; to appear in Probab. Theory Related Fields.

  12. Hille, E. and Phillips, R.: Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957.

  13. Kusuoka, S.: 'Dirichlet forms and diffusion processes on Banach spaces', J. Fac. Sci., Univ. Tokyo, Sect. I A 29 (1982), 79-95.

    Google Scholar 

  14. Li, Z., Shiga, T. and Yao, L.: 'A reversibility problem for Fleming-Viot processes', Elect. Comm. in Probab. 4 (1999), 65-76.

    Google Scholar 

  15. Ma, Z.M. and Röckner, M.: Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  16. McShane, E.: 'Extension of range of functions', Bull. Amer. Math. Soc. 40 (1934), 837-842.

    Google Scholar 

  17. Overbeck, L. and Röckner, M.: 'Geometric aspects of finite and infinite-dimensional Fleming-Viot processes', Random Oper. Stoch. Equation 5(1) (1997), 35-58.

    Google Scholar 

  18. Overbeck, L., Röckner, M. and Schmuland, B.: 'An analytic approach to the Fleming-Viot processes with interactive selection', Ann. Probab. 23(1) (1995), 1-36.

    Google Scholar 

  19. Rademacher, H.: 'Ñber partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale', Math. Ann. 79 (1919), 340-359.

    Google Scholar 

  20. Reed, M. and Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Selfadjointness, Academic Press, San Diego, 1975.

    Google Scholar 

  21. Riesz, F. and Nagy, S.B.: Vorlesungen über Funktionalanalysis, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.

    Google Scholar 

  22. Röckner, M. and Schied, A.: 'Rademacher's theorem on configuration spaces and applications', J. Funct. Anal. 169(2) (1999), 325-356.

    Google Scholar 

  23. Schied, A.: 'Geometric aspects of Fleming-Viot and Dawson-Watanabe processes', Ann. Probab. 25(3) (1997), 1160-1179.

    Google Scholar 

  24. Shiga, T.: 'A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes', J. Math. Kyoto Univ. 30 (1990), 245-279.

    Google Scholar 

  25. Stannat, W.: 'On the validity of the log-Sobolev inequality for symmetric Fleming-Viot operators', Ann. Probab. 28(2) (2000), 667-684.

    Google Scholar 

  26. Sturm, K.-T.: 'The geometric aspect of Dirichlet forms', in J. Jost et al. (eds), New Directions in Dirichlet Forms, AMS/IP Stud. Adv. Math. 8, Amer. Math. Soc., Providence, RI, 1998, pp. 233-277.

    Google Scholar 

  27. Sturm, K.-T.: 'On the geometry defined by Dirichlet forms', in E. Bolthausen et al. (eds), Seminar on Stochastic Analysis, Random Fields and Applications. Proceedings of a Seminar Held at the Centro Stefano Franscini, Ascona, Switzerland, 7-12 June, 1993, Prog. Probab. 36, Birkhäuser, Basel, 1995, pp. 231-242.

    Google Scholar 

  28. Sturm, K.-T.: 'Analysis on local Dirichlet spaces I. Recurrence, conservativeness and Lp-Liouville properties', J. Reine Angew. Math. 456 (1994), 173-186.

    Google Scholar 

  29. Tsilevich, N. and Vershik, A.: 'Quasi-invariance of the gamma process and multiplicative properties of the Poisson-Dirichlet measures', C. R. Acad. Sci. Paris, Ser. I Math. 329(2) (1999), 163-168.

    Google Scholar 

  30. Tsilevich, N., Vershik, A. and Yor, M.: Distinguished properties of the gamma process and related topics, Preprint, Sankt Petersburg, 2000.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schied, A. Geometric Analysis for Symmetric Fleming–Viot Operators: Rademacher's Theorem and Exponential Families. Potential Analysis 17, 351–374 (2002). https://doi.org/10.1023/A:1016360318443

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016360318443

Navigation