Skip to main content
Log in

Fine Properties of Sets of Finite Perimeter in Doubling Metric Measure Spaces

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the properties of the perimeter measure in the quite general setting of metric measure spaces. In particular, defining the essential boundary ∂* E of E as the set of points where neither the density of E nor the density of XE is 0, we show that the perimeter measure is concentrated on ∂* E and is representable by an Hausdorff-type measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), 51-67.

    Google Scholar 

  2. Ambrosio, L. and Tilli, P.: Selected Topics on 'Analysis in Metric Spaces', Quaderno della Scuola Normale Superiore di Pisa, 2000.

  3. Ambrosio, L., Fusco, N. and Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Univ. Press, 2000.

  4. Baldi, A.: Weighted BV functions, Houston J. Math. (2000), to appear.

  5. Bellettini, G., Bouchitté, G. and Fragalà, I.: BV functions with respect to a measure and relaxation of metric integral functionals, J. Convex Anal. 6 (1999), 349-366.

    Google Scholar 

  6. Biroli, M. and Mosco, U.: Sobolev inequalities on homogeneous spaces, Potential Anal. 4 (1995), 311-324.

    Google Scholar 

  7. Biroli, M. and Mosco, U.: Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. IX Ser. 6 (1995), 37-44.

    Google Scholar 

  8. Caccioppoli, R.: Misura e integrazione sugli insiemi dimensionalmente orientati I, II, Rend. Accad. Naz. Lincei (8) 12 (1952), 3-11 and 137-146; also in: Opere, Vol. I, Cremonese, 1963, pp. 358-380.

    Google Scholar 

  9. Capogna, L., Danielli, D. and Garofalo, N.: The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 2 (1994), 203-215.

    Google Scholar 

  10. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428-517.

    Google Scholar 

  11. Danielli, D., Garofalo, N. and Nhieu, D. M.: Trace inequalities for Carnot–Carathéodory spaces and applications, Ann. Scuola Norm. Sup. Pisa 27 (1998), 195-252.

    Google Scholar 

  12. Dal Maso, G.: An Introduction to Γ-Convergence, Birkhäuser, Basel, 1993.

    Google Scholar 

  13. David, G. and Semmes, S.: Fractured Fractals and Broken Dreams–Self-similar Geometry through Metric and Measure, Oxford Univ. Press, 1997.

  14. De Giorgi, E.: Nuovi teoremi relativi alle misure (r–1)-dimensionali in uno spazio a r dimensioni, Ricerche Mat. 4 (1955), 95-113.

    Google Scholar 

  15. De Giorgi, E.: Problema di Plateau generale e funzionali geodetici, Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 285-292.

    Google Scholar 

  16. Falconer, K. J.: The Geometry of Fractal Sets, Cambridge Univ. Press, 1985.

  17. Federer, H.: Geometric Measure Theory, Springer, 1969.

  18. Franchi, B. and Lanconelli, E.: Hölder regularity theorem for a class of non uniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541.

    Google Scholar 

  19. Franchi, B., Gallot, S. and Wheeden, R. L.: Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557-571.

    Google Scholar 

  20. Franchi, B., Serapioni, R. and Serra Cassano, F.: Meyers–Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math. 22 (1996), 859-889.

    Google Scholar 

  21. Franchi, B., Serapioni, R. and Serra Cassano, F.: Sets of finite perimeter in the Heisenberg group, C.R. Acad. Sci. Paris 329 (1999), 183-188.

    Google Scholar 

  22. Franchi, B., Serapioni, R. and Serra Cassano, F.: Rectifiability and perimeter in the Heisenberg group,Math. Ann., to appear.

  23. Garofalo, N. and Nhieu, D. M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144.

    Google Scholar 

  24. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1994.

    Google Scholar 

  25. Gol'dshtein, V. and Troyanov, M.: Axiomatic theory of Sobolev spaces, Exposition. Math., to appear.

  26. Gromov, M.: Carnot–Carathéodory spaces seen from within, In: A. Bellaiche and J. Risler (eds), Subriemannian Geometry, Progr. in Math. 144, Birkhäuser, Basel, 1996.

    Google Scholar 

  27. Hajłasz, P.: Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415.

    Google Scholar 

  28. Hajłasz, P. and Koskela, P.: Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000).

  29. Heinonen, J.: Lectures on Analysis on Metric Spaces, Universitext, Springer, Berlin, 2001.

    Google Scholar 

  30. Heinonen, J. and Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1-61.

    Google Scholar 

  31. Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523.

    Google Scholar 

  32. Lanconelli, E. and Morbidelli, D.: On the Poincaré inequality for vector fields, Preprint.

  33. Miranda, M. Jr.: Functions of bounded variation on 'good' metric measure spaces, forthcoming.

  34. Pansu, P.: Une inégalité isopérimétrique sur le groupe de Heisenberg, C.R. Acad. Sci. Paris 295 (1982), 127-130.

    Google Scholar 

  35. Pansu, P.: Métriques de Carnot–Carathéodory et quasiisométries des espaces symmétriques de rang un, Ann. of Math. 129 (1989), 1-60.

    Google Scholar 

  36. Rudin, W.: Real and Complex Analysis, McGraw-Hill, New York, 1987.

    Google Scholar 

  37. Semmes, S.: On the non existence of bilipschitz parametrization and geometric problems about A∞ weights, Rev. Mat. Iberoamericana 12 (1996), 337-410.

    Google Scholar 

  38. Semmes, S.: Fractal geometries, 'decent calculus' and structure among geometries, Preprint, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosio, L. Fine Properties of Sets of Finite Perimeter in Doubling Metric Measure Spaces. Set-Valued Analysis 10, 111–128 (2002). https://doi.org/10.1023/A:1016548402502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016548402502

Navigation