Skip to main content
Log in

A Geometric Characterization of Viable Sets for Controlled Degenerate Diffusions

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

For a general controlled diffusion process and an arbitrary closed set K we study the viability, or weak invariance, or controlled invariance, of K, that is, the existence of a control for each initial point in K keeping the trajectory forever in K. By viscosity solutions methods we prove a simple necessary and sufficient condition involving only a deterministic second-order normal cone to K and the data of the diffusion process. We also give an extension to stochastic differential games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J. P.: Viability Theory, Birkhäuser, Boston, 1991.

  2. Aubin, J. P. and Cellina, A.: Differential Inclusions, Springer, Berlin, 1984.

    Google Scholar 

  3. Aubin, J. P. and Da Prato, G.: Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa (IV) 17 (1990), 595-613.

    Google Scholar 

  4. Aubin, J. P. and Da Prato, G.: Stochastic Nagumo's viability theorem, Stochastic Anal. Appl. 13 (1995), 1-11.

    Google Scholar 

  5. Aubin, J. P. and Da Prato, G.: The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl. 16 (1998), 1-15.

    Google Scholar 

  6. Bardi, M. and Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser, Boston, 1997.

    Google Scholar 

  7. Bardi, M. and Goatin, P.: Invariant sets for controlled degenerate diffusions: A viscosity solutions approach, In: W. M. McEneaney, G. G. Yin and Q. Zhang (eds), Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W. H. Fleming, Birkhäuser, Boston, 1999, pp. 191-208.

    Google Scholar 

  8. Bardi, M., Goatin, P. and Ishii, H.: A Dirichlet type problem for nonlinear degenerate elliptic equations arising in time-optimal stochastic control, Adv. Math. Sci. Appl. 10 (2000), 329-352.

    Google Scholar 

  9. Buckdahn, R., Peng, S., Quincampoix, M. and Rainer, C.: Existence of stochastic control under state constraints, C.R. Acad. Sci. Paris Sér. I Math. 327 (1998), 17-22.

    Google Scholar 

  10. Cardaliaguet, P.: A differential game with two players and one target, SIAM J. Control Optim. 34 (1996), 1441-1460.

    Google Scholar 

  11. Crandall, M. C., Ishii, H. and Lions, P. L.: User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67.

    Google Scholar 

  12. El Karoui, N., Hu-0307;u-0307; Nguyen, D. and Jeanblanc-Picqué, M.: Compactification methods in the control of degenerate diffusions: Existence of an optimal control, Stochastics 20 (1987), 169-219.

    Google Scholar 

  13. Fleming, W. H. and Soner, H. M.: Controlled Markov Process and Viscosity Solutions, Springer, New York, 1993.

    Google Scholar 

  14. Fleming, W. H. and Souganidis, P. E.: On the existence of value functions of two-players, zero-sum stochastic differential games, Indiana Univ. Math. J. 38 (1989), 293-314.

    Google Scholar 

  15. Friedman, A.: Stochastic Differential Equations and Applications,Vol. 2, Academic Press, New York, 1976.

    Google Scholar 

  16. Guseinov, H. G., Subbotin, A. I. and Ushakov, V. N.: Derivatives for multivalued mappings with applications to game-theoretical problems of control, Problems Control Inform. Theory 14 (1985), 155-167.

    Google Scholar 

  17. Haussmann, U. G. and Lepeltier, J. P.: On the existence of optimal controls, SIAM J. Control Optim. 28 (1990), 851-902.

    Google Scholar 

  18. Ikeda, N. and Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.

    Google Scholar 

  19. Ishii, H. and Lions, P.-L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations 83 (1990), 26-78.

    Google Scholar 

  20. Jensen, R.: Uniqueness criteria for viscosity solutions of fully nonlinear elliptic partial differential equations, Indiana Univ. Math. J. 38 (1989), 629-667.

    Google Scholar 

  21. Kushner, H. J.: Existence of optimal controls for variance control, In: W. M. McEneaney, G. G. Yin and Q. Zhang (eds), Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W. H. Fleming, Birkhäuser, Boston, 1999, pp. 421-437.

    Google Scholar 

  22. Lions, P.-L.: Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. Part 1: The dynamic programming principle and applications, Part 2: Viscosity solutions and uniqueness, Comm. Partial Differential Equations 8 (1983), 1101-1174 and 1229-1276.

    Google Scholar 

  23. Lions, P.-L.: On the Hamilton–Jacobi–Bellman equations, Acta Appl. Math. 1 (1983), 17-41.

    Google Scholar 

  24. Nagumo, N.: Ñber die Lage der Integralkurven gewöhnlicher Differentialgleichungen, Proc. Phys. Math. Soc. Japan 24 (1942), 551-559.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardi, M., Jensen, R. A Geometric Characterization of Viable Sets for Controlled Degenerate Diffusions. Set-Valued Analysis 10, 129–141 (2002). https://doi.org/10.1023/A:1016596318432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016596318432

Navigation