Skip to main content
Log in

Traveling Wave Fronts of Reaction-Diffusion Systems with Delay

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

An Erratum to this article was published on 02 November 2007

Abstract

This paper deals with the existence of traveling wave front solutions of reaction-diffusion systems with delay. A monotone iteration scheme is established for the corresponding wave system. If the reaction term satisfies the so-called quasimonotonicity condition, it is shown that the iteration converges to a solution of the wave system, provided that the initial function for the iteration is chosen to be an upper solution and is from the profile set. For systems with certain nonquasimonotone reaction terms, a convergence result is also obtained by further restricting the initial functions of the iteration and using a non-standard ordering of the profile set. Applications are made to the delayed Fishery–KPP equation with a nonmonotone delayed reaction term and to the delayed system of the Belousov–Zhabotinskii reaction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • S. Ahmad and A. S. Vatsala, Comparison, results of reaction-diffusion equations with delay in abstract cones. Rend. Sem. Math. Univ. Padova 65 (1981), 19-34

    Google Scholar 

  • D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve preparation. In Partial Differential Equations and Related Topics (J. Goldstein, ed.), Lect. Notes Math., Vol. 446, Springer-Verlag, New York. 1975, pp. 5-49.

    Google Scholar 

  • I. Barbalat, Système d'equations differentielle d'oscillations nonlineaires. Rev. Rounmaie Math. Pures Appl. 4 (1959), 267-270.

    Google Scholar 

  • B. P. Belousov, Aperiodic reaction and its mechanism. Ref. Radiat. Med. Medgiz (1959), 45.

  • N. F. Britton, Reaction-Diffusion Equations and Their Applications to Biology, Academic Press, New York, 1986.

    Google Scholar 

  • O. Diekmann, On a nonlinear integral equation arising in mathematical epidemiology. In Differential Equations and Applications (Proc. Third Scheveningen Conf., Scheveningen, 684 Wu and Zou 1977), North-Holland Math. Stud., 31, North-Holland, Amsterdam-New York, 1978a, pp. 133-140.

    Google Scholar 

  • O. Diekmann, Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol. 6 (1978b), 109-130.

    Google Scholar 

  • O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Diff. Eqs. 33 (1978c), 58-73.

    Google Scholar 

  • O. Diekmann, Integral equations and population dynamic. In Colloquium Numerical Treatment of Integral Equations (Math. Centre, Amsterdam, 1978-1979), MC Syllabus, 41, Math. Centrum, Amsterdam, 1979, pp. 115-149.

    Google Scholar 

  • O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation. Nonlin. Anal. 2 (1978), 721-737.

    Google Scholar 

  • P. C. Fife, Mathematical Aspects of Reaction and Diffusion System Lecture Notes in Biomathematics, Vol. 28, Springer-Verlag, Berlin and New York. 1979.

    Google Scholar 

  • R. A. Fisher, The wave of advance of advantageous gene. Ann. Eugen. 7 (1937), 355-369.

    Google Scholar 

  • R. Gardner, Review on Traveling Wave Solutions of Parabolic Systems by A. I. Volpert, V. A. Volpert and V. A. Volpert. Bull. Am. Math. Soc. 32 (1995), 446-452.

    Google Scholar 

  • K. Gopalsamy, Stability and Oscillations in Delay Difference Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, 1992.

    Google Scholar 

  • W. W. Hirsch, H. Hamisch, and J.-P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior. Comm. Pure App. Math. 38 (1948), 221-246.

    Google Scholar 

  • G. E. Hutchinson, Circular causal systems in ecology, Ann. N. Y. Acad. Sci. 50 (1948), 221-246.

    Google Scholar 

  • Ya. I. Kanel, Existence of a traveling-wave solution of the Belousov-Zhabotinskii system. Diiferetsial'nye Uravneniya 26 (1990), 652-660.

    Google Scholar 

  • A. Y. Kapel, Existence of traveling-wave type solutions for the Belousov-Zhabotinskii system equations. Sibirskii, Math. Zh. 32 (1991), 47-59.

    Google Scholar 

  • W. Kerscher and R. Nagel, Asymptotic behavior of one-parameter semigroups of positive operators. Acta Appl. Math. 2 (1984), 297-309.

    Google Scholar 

  • K. Kobayshi, On the semilinear heat equation with time-lag. Hiroshima Math. J. 7 (1977), 459-472.

    Google Scholar 

  • A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem. Byul. Mosk. Gos. Univ. Ser. A Mat. Mekh. 1 (1937), 1-26.

    Google Scholar 

  • Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993.

    Google Scholar 

  • K. Kunish and W. Schappacher, Order preserving evolution operators of functional differential equations. Boll. Unione Mate. Ital. 16B (1979), 480-500.

    Google Scholar 

  • G. Ladas and V. Lakshmikantham, Differential Equations in Abstract Spaces, Academic Press., New York, 1972.

    Google Scholar 

  • V. Lakshmikanthan and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford, 1981.

    Google Scholar 

  • S. Leela and V. Moauro, Existence of solutions of delay differential equations on closed subsets of a Banach space. Nonlin. Anal. TMA 2 (1978), 47-58.

    Google Scholar 

  • R. Lui, Biological growth and spread modeled by systems of recursion. I. Mathematical theory. Math. Biosci. 93 (1989a), 269-295.

    Google Scholar 

  • R. Lui, Biological growth and: spread modeled by systems of recursion. II. Biological theory. Math. Biosci. 93 (1989b), 297-312.

    Google Scholar 

  • R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321 (1990), 1-44.

    Google Scholar 

  • R. H. Martin and H. L. Smith, Reaction-diffusion systems with time delay: Monotonicity, invariance, comparison and convergence. J. Reine Angew. Math. 414 (1991), 1-35.

    Google Scholar 

  • J. D. Murray, On a model for temporal oscillations in the Belousov-Zhabotinskii reaction. J. Chem. Phys. 61 (1974), 3611-3613.

    Google Scholar 

  • J. D. Murray, On traveling wave solutions in a model for Belousov-Zhabotinskii reaction. J. Theor. Biol. 56 (1976), 329-353.

    Google Scholar 

  • J. D. Murray, Mathematical Biology, Springer-Verlag, New York, 1989.

    Google Scholar 

  • J. Radcliffe and L. Rass, Wave solutions for the deterministic nonreducible n-type epidemic. J. Math. Biol. 17 (1983a), 45-66.

    Google Scholar 

  • J. Radcliffe and L. Rass, The uniqueness of wave solutions for the deterministic non reducible n-type epidemic. J. Math. Biol. 19 (1983b), 303-308.

    Google Scholar 

  • J. Radcliffe and L. Rass, The asymptotic speed of propagation of the deterministic non-reducible n-type epidemic. J. Math. Biol. 23 (1986), 341-359.

    Google Scholar 

  • K. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations. Trans.-Am. Math. Soc. 302 (1987), 587-615.

    Google Scholar 

  • H. L. Smith, Monotone semiflows generated by functional differential equations. J. Diff. Eqs. 66 (1987), 420-442.

    Google Scholar 

  • H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Am. Math. Soc., Providence, RI, 1995.

    Google Scholar 

  • H. L. Smith and H. R. Thieme, Monotone semiflows in scalar non-quasimonotone functional differential equations. J. Math. Anal. Appl. 150 (1990), 289-306.

    Google Scholar 

  • H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional differential equations. Diff. Esq. 93 (1991), 322-363.

    Google Scholar 

  • J. So and J. Yu, Global attractivity for a population model with time delay. Proc. Am. Math. Soc. 125 (1995), 2687-2694.

    Google Scholar 

  • J. Sugie, On the stability for a population growth equation with time delay. Proc. Roy. Soc. Edinburgh A 120 (1992), 179-184.

    Google Scholar 

  • H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math. 306 (1979a), 94-21.

    Google Scholar 

  • H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spreed. J. Math. Biol. 8 (1979b), 173-187.

    Google Scholar 

  • W. C. Troy, The existence of traveling wave front solutions of a model of the Belousov-Zhabotinskii reaction. J. Diff. Eqs. 36 (1980), 89-98.

    Google Scholar 

  • A. I. Volpert, V. A. Volpert, and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, Vol. 140, Am. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  • H. F. Weinberger, Some deterministic models for the spread of genetic and other alterations. In Biological Growth and Spreed (W. Jaeger, H. Rost, and P. Tautu, eds.), Lectures in Biomathematics, 38, Springer-Verlag, New York. 1981, pp. 320-333.

    Google Scholar 

  • H. F. Weinberger, Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13 (1982), 353-396.

    Google Scholar 

  • E. M. Wright, A non-linear difference-differential equation. J. Reine Angew. Math. 194 (1955), 66-87.

    Google Scholar 

  • J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.

    Google Scholar 

  • Q. Ye and M. Wang, Traveling wave front solutions of Noyes-Field System for Belousov-Zhabotinskii reaction. Nonlin. Anal. TMA 11 (1987), 1289-1302.

    Google Scholar 

  • A. N. Zaikin and A. M. Zhabotinskii, Concentration wave propagation in two dimensional liquid phase self oscillation system. Nature 225 (1970), 535-537.

    Google Scholar 

  • A. M. Zhabotinskii, Concentration Autooscillations, Nauka, Moscow, 1974 (in Russian).

    Google Scholar 

  • E. C. Zimmermann, M. Schell, and J. Ross, Stabilization of unstable states and oscillatory phenomena in an illuminated thermochemical system: Theory and experiment. J. Chem. Phys. 81 (1984), 1327-1336.

    Google Scholar 

  • X. Zou and J. Wu, Existence of traveling wave fronts in delayed reaction-diffusion systems via monotone iteration method. Proc. Am. Math. Soc. 125 (1997), 2589-2598.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10884-007-9090-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Zou, X. Traveling Wave Fronts of Reaction-Diffusion Systems with Delay. Journal of Dynamics and Differential Equations 13, 651–687 (2001). https://doi.org/10.1023/A:1016690424892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016690424892

Navigation