Skip to main content
Log in

A Stationary Rho-Mixing Markov Chain Which Is Not “Interlaced” Rho-Mixing

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

A strictly stationary, countable-state Markov chain is constructed which is ρ-mixing (with arbitrarily fast mixing rate) but fails to be ρ*-mixing (“interlacedρ-mixing”).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bradley, R. C. (1989). A caution on mixing conditions for random fields. Statist. Probab. Lett. 8, 489–491.

    Google Scholar 

  2. Bradley, R. C. (1993). Equivalent mixing conditions for random fields. Ann. Probab. 21, 1921–1926.

    Google Scholar 

  3. Bradley, R. C. (1997). Every “lower psi-mixing” Markov chain is “interlaced rho-mixing.” Stochastic Process. Appl. 72, 221–239.

    Google Scholar 

  4. Bradley, R. C. (1998). On the simultaneous behavior of the dependence coefficients associated with three mixing conditions. Rocky Mountain J. Math. 28, 393–415.

    Google Scholar 

  5. Bradley, R. C. (1999). Two inequalities and some applications in connection with ?*-mixing, a survey. In Hill, T. P., and Houdré, C. (eds.), Advances in Stochastic Inequalities, Contemporary Mathematics, Vol. 234, American Mathematical Society, Providence, Rhode Island, pp.21–41.

    Google Scholar 

  6. Bradley, R. C. (1999). Can a theorem of Csáki and Fischer provide a key to Ibragimov's conjecture? In Révész, P., and Tóth, B. (eds. ), Random Walks, Bolyai Society Mathematical Studies 9, János Bolyai Mathematical Society, Budapest, pp.11–42.

    Google Scholar 

  7. Csáki, P., and Fischer, J. (1963). On the general notion of maximal correlation. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 8, 27–51.

    Google Scholar 

  8. Davydov, Yu. A. (1973). Mixing conditions for Markov chains. Theor. Probab. Appl. 18, 312–328.

    Google Scholar 

  9. Denker, M. (1989). The central limit theorem for dynamical systems. In Krzyzewski, K. (ed.), Dynamical Systems andErgodic Theory, Banach Center Publications 23, PWNûPolish Scientific Publishers, Warsaw, pp.33–62.

    Google Scholar 

  10. Doukhan, P. (1995). Mixing: Properties andExamples, Springer-Verlag, New York.

    Google Scholar 

  11. Gaposhkin, V. F. (1991). Moment bounds for integrals of ?-mixing fields. Theor. Probab. Appl. 36, 249–260.

    Google Scholar 

  12. Gebelein, H. (1941). Das statistische Problem der Korrelation als variations-und Eigenwertproblem und sein Zusammenhang mit der Ausgleichungsrechnung. Z. Angew. Math. Mech. 21, 364–379.

    Google Scholar 

  13. Goldie, C. M., and Greenwood, P. E. (1986). Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes. Ann. Probab. 14, 817–839.

    Google Scholar 

  14. Hirschfeld, H. O. (1935). A connection between correlation and contingency. Proc. Camb. Phil. Soc. 31, 520–524.

    Google Scholar 

  15. Ibragimov, I. A., and Rozanov, Yu. A. (1978). Gaussian Random Processes, Springer-Verlag, New York.

    Google Scholar 

  16. Kolmogorov, A. N., and Rozanov, Yu. A. (1960). On strong mixing conditions for stationary Gaussian processes. Theor. Probab. Appl. 5, 204–208.

    Google Scholar 

  17. Meyn, S. P., and Tweedie, R. L. (1996). Markov Chains andStochastic Stability, Springer-Verlag, New York.

    Google Scholar 

  18. Olshen, R. A. (1971). The coincidence of measure algebras under an exchangable probability. Z. Wahrsch. verw. Gebiete 18, 153–158.

    Google Scholar 

  19. Peligrad, M., and Gut, A. (1999). Almost-sure results for a class of dependent random variables. J. Theor. Probab. 12, 87–104.

    Google Scholar 

  20. Phillip, W. (1988). Limit theorems for sums of partial quotients of continued fractions. Monatsheft für Math. 105, 195–206.

    Google Scholar 

  21. Rosenblatt, M. (1971). Markov Processes, Structure andAsymptotic Behavior, Springer-Verlag, New York.

    Google Scholar 

  22. Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables.In Proceedings of the Sixth Berkeley Symposium on Probability andStatistics, Vol.2n, University of California Press, Los Angeles, pp.583–602.

    Google Scholar 

  23. Witsenhausen, H. S. (1975). On sequences of pairs of dependent random variables. SIAM J. Appl. Math. 28, 100–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, R.C. A Stationary Rho-Mixing Markov Chain Which Is Not “Interlaced” Rho-Mixing. Journal of Theoretical Probability 14, 717–727 (2001). https://doi.org/10.1023/A:1017545123473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017545123473

Navigation