Skip to main content
Log in

Occupation Time Fluctuations in Branching Systems

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider particle systems in locally compact Abelian groups with particles moving according to a process with symmetric stationary independent increments and undergoing one and two levels of critical branching. We obtain long time fluctuation limits for the occupation time process of the one- and two-level systems. We give complete results for the case of finite variance branching, where the fluctuation limits are Gaussian random fields, and partial results for an example of infinite variance branching, where the fluctuation limits are stable random fields. The asymptotics of the occupation time fluctuations are determined by the Green potential operator G of the individual particle motion and its powers G 2,G 3, and by the growth as t→∞ of the operator \(G_t = \int_0^t {T_s } ds\)and its powers, where T t is the semigroup of the motion. The results are illustrated with two examples of motions: the symmetric α-stable Lévy process in \(\mathbb{R}^d (0 < \alpha \leqslant 2)\), and the so called c-hierarchical random walk in the hierarchical group of order N (0<c<N). We show that the two motions have analogous asymptotics of G t and its powers that depend on an order parameter γ for their transience/recurrence behavior. This parameter is γ=d/α−1 for the α-stable motion, and γ=log c/log(N/c) for the c-hierarchical random walk. As a consequence of these analogies, the asymptotics of the occupation time fluctuations of the corresponding branching particle systems are also analogous. In the case of the c-hierarchical random walk, however, the growth of G t and its powers is modulated by oscillations on a logarithmic time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Barlow, M. T., and Perkins, E. A. (1988). Brownian motion on the Sierpi?ski gasket. Probab. Th. Rel. Fields 79, 543–623.

    Google Scholar 

  2. Cartwright, D. I. (1988). Random walks on direct sums of discrete groups. J. Theor. Probab. 1, 341–356.

    Google Scholar 

  3. Collet, P., and Eckmann, J.-P. (1978). A renormalization group analysis of the hierarchical model in statistical mechanics. Lecture Notes in Physics 74, Springer-Verlag, Berlin/New York.

    Google Scholar 

  4. Cox, J. T., and Griffeath, D. (1984). Large deviations for Poisson systems of independent random walks. Probab. Th. Rel. Fields 66, 543–558.

    Google Scholar 

  5. Cox, J. T., and Griffeath, D. (1985). Occupation times for critical branching Brownian motions. Ann. Probab. 13, 1108–1132.

    Google Scholar 

  6. Dawson, D. A., and Gorostiza, L. G. (1990). Generalized solutions of a class of nuclear-space-valued stochastic evolution equations. Appl. Math. Optim. 22, 241–263.

    Google Scholar 

  7. Dawson, D. A., and Greven, A. Multiple space-time scale analysis for interacting branching models. Electron. J. Probab. 1(14), 84.

  8. Dawson, D. A., and Ivanoff, G. (1978). Branching diffusions and random measures. In Joffe, A., and Ney, P. (eds.), Branching Processes, M. Dekker, New York, pp. 61–103.

    Google Scholar 

  9. Dawson, D. A., and Hochberg, K. J. (1991). A multilevel branching model. Adv. Appl. Prob. 23, 701–715.

    Google Scholar 

  10. Dawson, D. A., Hochberg, K. J., and Vinogradov, V. (1996). High-density limits of hierarchically structured branching-diffusing populations. Stoch. Proc. Appl. 62, 191–222.

    Google Scholar 

  11. Dawson, D. A., and Perkins, E. (1991). Historical Processes. Memoirs of the AMS 454, Providence, Rhode Island.

  12. Dawson, D. A., and Perkins, E. (1999). Measure-valued processes and renormalization of branching particle systems. In Carmona, R. A., and Rozovskii, B. (eds.), Stochastic Partial Differential Equations: Six Perspectives, Math. Surveys and Monographs, Vol. 64, AMS, pp. 45–106.

  13. Deuschel, J. D., and Rosen, J. (1998). Occupation time large deviations for critical branching Brownian motion, super-Brownian motion and related processes. Ann. Probab. 26, 602–643.

    Google Scholar 

  14. Deuschel, J. D., and Wang, K. (1994). Large deviations for the occupation time functional of a Poisson system of independent Brownian particles. Stoch. Proc. Appl. 52, 183–209.

    Google Scholar 

  15. Fleischmann, K., and Greven, A. (1994). Diffusive clustering in an infinite system of hierarchically interacting diffusions. Probab. Th. Rel. Fields 98, 517–566.

    Google Scholar 

  16. Gorostiza, L. G. (1996). Asymptotic fluctuations and critical dimension for a two-level branching system. Bernoulli 2, 109–132.

    Google Scholar 

  17. Gorostiza, L. G., Hochberg, K., and Wakolbinger, A. (1995). Persistence of a critical super-2 process. J. Appl. Prob. 32, 534–540.

    Google Scholar 

  18. Gorostiza, L. G., and López-Mimbela, J. A. (1994). An occupation time approach for convergence of measure-valued processes, and the death process of a branching system. Stat. Prob. Lett. 21, 59–67.

    Google Scholar 

  19. Gorostiza, L. G., Roelly-Coppoletta, S., and Wakolbinger, A. (1990). Sur la persistence du processus de DawsonûWatanabe stable. In Azéma, J., Meyer, P. A., and Yor, M. (eds.), Séminaire de Probabilités XXIV, Lecture Notes Math., Vol. 1426, Springer-Verlag, Berlin, pp. 275–281.

    Google Scholar 

  20. Gorostiza, L. G., and Rodrigues, E.R. (1999). A stochastic model for transport of particulate matter in air: An asymptotic analysis. Acta Applicandae Mathematicae 59, 21–43.

    Google Scholar 

  21. Gorostiza, L. G., and Wakolbinger, A. (1991). Persistence criteria for a class of critical branching particle systems in continuous time. Ann. Probab. 19, 266–288.

    Google Scholar 

  22. Gorostiza, L. G., and Wakolbinger, A. (1994). Long time behavior of critical particle systems and applications. In Dawson, D. A. (ed.), Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems, CRM Proc. and Lecture Notes, Vol. 5, AMS, pp. 119–137.

  23. Grabner, P. J. and Woess, W. (1997). Functional iterations and periodic oscillations for simple random walk on the Sierpi?ski gasket. Stoch. Proc. Appl. 69, 127–138.

    Google Scholar 

  24. Greven, A., and Hochberg, K. J. (2000). New behavioral patterns for two-level branching systems. In Gorostiza, L. G., and Ivanoff, B. G. (eds.), Stochastic Models, CMS Conference Proceedings, Vol. 26, AMS, pp. 205–215.

  25. Hochberg, K. J. (1995). Hierarchically structured branching populations with spatial motion. Rocky Mountain J. Math. 25, 269–283.

    Google Scholar 

  26. Hochberg, K. J., and Wakolbinger, A. (1995). Non-persistence of two-level branching particle systems in low dimensions. In Etheridge, A. (ed.), Stochastic Partial Differential Equations, London Mathem. Soc. Lecture Note Series, Vol. 216, Cambridge Univ. Press, pp. 126–140.

  27. Iscoe, I. (1986). A weighted occupation time for a class of measure-valued branching processes. Probab. Th. Rel. Fields 71, 85–116.

    Google Scholar 

  28. Kallenberg, O. (1983). RandomMeasures, 3rd edn., Akademie-Verlag, Berlin, Academic Press, New York.

    Google Scholar 

  29. Kesten, H., and Spitzer, F. (1965). Random walks on countably infinite Abelian groups. Acta Math. 114, 237–265.

    Google Scholar 

  30. Klenke, A. (1997). Multiple scale analysis of clusters in spacial branching models. Ann. Probab. 25, 1670–1711.

    Google Scholar 

  31. Liemant, A., Matthes, K., and Wakolbinger, A. (1998). EquilibriumDistributions of Branching Processes, Akademie-Verlag, Berlin and Kluwer, Dordrecht.

    Google Scholar 

  32. Méléard, S., and Roelly, S. (1992). An ergodic result for critical spatial branching systems. Stochastic Analysis and Related Topics, Progress in Probability, Vol. 31, Birkhauser, Boston, pp. 333–341.

    Google Scholar 

  33. Port, S. C., and Stone, C. J. (1971). Infinitely divisible processes and their potential theory (First Part). Ann. Inst. Fourier 21(2), 157–275.

    Google Scholar 

  34. Sato, K. (1996). Criteria of weak and strong transience for Lévy processes. In Probability Theory and Mathematical Statistics, Proceedings of the Seventh Japan-Russia Symposium, World Scientific, Singapore, pp. 438–449.

    Google Scholar 

  35. Sawyer, S., and Felsenstein, J. (1983). Isolation by distance in a hierarchically clustered population. J. Appl. Prob. 20, 1–10.

    Google Scholar 

  36. Sinai, Ya. G. (1982). Theory of Phase Transitions: Rigorous results, Pergamon Press.

  37. Spitzer, F. (1964). Principles of RandomWalk, Van Nostrand, Princeton.

    Google Scholar 

  38. Stöckl, A., and Wakolbinger, A. (1994). On clan-recurrence and-transience in time stationary branching Brownian particle systems. In Dawson, D. A. (ed.), Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems, CRM Proc. and Lecture Notes, Vol. 5, AMS, pp. 213–219.

  39. Wilson, K. (1976). The renormalization group and block spins. In Pál, L., and Szépfalusy, P. (eds.), Proceedings of the International Conference on Statistical Physics, North Holland, Amsterdam.

    Google Scholar 

  40. Wu, Y. (1994). Asymptotic behavior of two level measure branching processes. Ann. Probab. 22, 854–874.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, D.A., Gorostiza, L.G. & Wakolbinger, A. Occupation Time Fluctuations in Branching Systems. Journal of Theoretical Probability 14, 729–796 (2001). https://doi.org/10.1023/A:1017597107544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017597107544

Navigation