Skip to main content
Log in

Gaussian Fluctuation for the Number of Particles in Airy, Bessel, Sine, and Other Determinantal Random Point Fields

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove the Central Limit Theorem (CLT) for the number of eigenvalues near the spectrum edge for certain Hermitian ensembles of random matrices. To derive our results, we use a general theorem, essentially due to Costin and Lebowitz, concerning the Gaussian fluctuation of the number of particles in random point fields with determinantal correlation functions. As another corollary of the Costin–Lebowitz Theorem we prove the CLT for the empirical distribution function of the eigenvalues of random matrices from classical compact groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • [BF] T. H. Baker and P. J. Forrester, Finite N fluctuation formulas for random matrices, J. Stat. Phys. 88:1371–1385 (1997).

    Google Scholar 

  • [Ba] E. Basor, Distribution functions for random variables for ensembles of positive Hermitian matrices, Commun. Math. Phys. 188:327–350 (1997).

    Google Scholar 

  • [BaW] E. Basor and H. Widom, Determinants of Airy operators and applications to random matrices, J. Stat. Phys. 96(1-2):1–20 (1999).

    Google Scholar 

  • [BI] P. Bleher and A. Its, Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model, Ann. of Math. 150:185–266 (1999).

    Google Scholar 

  • [BO1] A. Borodin and G. Olshanski, Point processes and the infinite symmetric group, Math. Res. Lett. 5:799–816 (1998).

    Google Scholar 

  • [BO2] A. Borodin and G. Olshanski, Z-Measures on partitions, Robinson-Schensted- Knuth correspondence and β=2 Random Matrix ensembles, available via http: //xxx/lanl/gov/abs/math/9905189.

  • [BOO] A. Borodin, A. Okounkov, and G. Olshanski, Asymptotics of Plancherel measures for symmetric groups, available via http://xxx/lanl/gov/abs/math/9905032.

  • [BdMK] A. Boutet de Monvel and A. Khorunzhy, Asymptotic distribution of smoothed eigenvalue density. I. Gaussian random matrices. II. Wigner random matrices, to appear in Rand. Oper. Stoch. Equ.

  • [BZ] E. Brézin and A. Zee, Universality of the correlations between eigenvalues of large random matrices, Nucl. Phys. B 402:613–627 (1993).

    Google Scholar 

  • [Br] B. V. Bronk, Exponential ensemble for random matrices, J. Math. Phys. 6: 228–237 (1965).

    Google Scholar 

  • [CL] O. Costin and J. Lebowitz, Gaussian fluctuations in random matrices, Phys. Rev. Lett. 75(1):69–72 (1995).

    Google Scholar 

  • [DKMVZ] P. Deift, T. Kriecherbauer, K. T-R McLaughlin, S. Venakides, and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Commun. Pure Appl. Math. 52:1335–1425 (1999).

    Google Scholar 

  • [DS] P. Diaconis and M. Shahshahani, On the eigenvalues of random matrices, Studies in Appl. Prob., Essays in honour of Lajos Takacs, J. Appl. Probab. A 31:49–62 (1994).

    Google Scholar 

  • [E] A. Erdelyi (ed.), Higher Transcendental Functions, Vol. 2 (New York, McGraw- Hill, 1953).

    Google Scholar 

  • [F] P. J. Forrester, The spectrum edge of random matrix ensembles, Nucl. Phys. B 402:709–728 (1994).

    Google Scholar 

  • [GK] I. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-selfadjoint Operators in Hilbert Space (Amer. Math. Soc., Providence, R.I., 1969).

  • [Jo1] K. Johansson, On fluctuation of eigenvalues of random Hermitian matrices, Duke Math. J. 91:151–204 (1998).

    Google Scholar 

  • [Jo2] K. Johansson, Universality of local spacing distribution in certain Hermitian Wigner matrices, available via http://xxx/lanl/gov/abs/math/PR/0006145.

  • [Jo3] K. Johansson, Shape fluctuations and random matrices, available via http://xxx/ lanl/gov/abs/math/9903134.

  • [Jo4] K. Johansson, Discrete orthogonal polynomials and the Plancherel measure, available via http://xxx/lanl/gov/abs/math/9906120.

  • [Jo5] K. Johansson, Transversal fluctuations for increasing subsequences on the plane, available via http://xxx/lanl/gov/abs/math/9910146.

  • [KKP] A. M. Khorunzhy, B. A. Khoruzhenko, and L. A. Pastur, Asymptotic properties of large random matrices with independent entries, J. Math. Phys. 37:5033–5059 (1996).

    Google Scholar 

  • [L1] A. Lenard, Correlation functions and the uniqueness of the state in classical statistical mechanics, Commun. Math. Phys. 30:35–44 (1973).

    Google Scholar 

  • [L2] A. Lenard, States of classical statistical mechanical system of infinitely many particles, I, II, Arch. Rational Mech. Anal. 59:219–256 (1975).

    Google Scholar 

  • [Ma] O. Macchi, The coincidence approach to stochastic point processes, Advances in Appl. Probability 7:83–122 (1975).

    Google Scholar 

  • [Me] M. L. Mehta, Random Matrices, 2nd ed. (Academic Press, New York, 1991).

    Google Scholar 

  • [NW] T. Nagao and M. Wadati, Correlation functions of random matrix ensembles related to classical orthogonal polynomials, J. Phys. Soc. Japan 60:3298–3322 (1991).

    Google Scholar 

  • [Ok1] A. Okounkov, Random matrices and random permutations, available via http:// xxx/lanl/gov/abs/math/9903176.

  • [Ok2] A. Okounkov, Infinite wedge and measures on partitions, available via http:// xxx/lanl/gov/abs/math/9907127.

  • [Ol] F. W. J. Oliver, Asymptotics and Special Functions (Wellesley, Massachusetts, A.K. Peters, 1997).

    Google Scholar 

  • [PS] L. A. Pastur and M. Shcherbina, Universality of the local eigenvalue statistics for a class of unitary invariant random matrices, J. Stat. Phys. 86:109–147 (1997).

    Google Scholar 

  • [PR] M. Plancherel and W. Rotach, Sur les valeurs asymptotiques des polynomes d'Hermite, Comm. Math. Helv. 1:227–254 (1929).

    Google Scholar 

  • [RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vols. II-V (Academic Press, New York, 1980, 1975, 1979, 1978).

    Google Scholar 

  • [SiSo1] Ya. Sinai and A. Soshnikov, A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices, Funct. Anal. Appl. 32(2):114–131 (1998).

    Google Scholar 

  • [SiSo2] Ya. Sinai and A. Soshnikov, Central limit theorem for traces of large random symmetric matrices with independent entries, Bol. Soc. Brasil. Mat. 29(1):1–24 (1998).

    Google Scholar 

  • [So1] A. Soshnikov, Level spacing distribution for large random matrices: Gaussian fluctuations, Ann. of Math. 148:573–617 (1998).

    Google Scholar 

  • [So2] A. Soshnikov, Universality at the edge of the spectrum in Wigner random matrices, Commun. Math. Phys. 207:697–733 (1999).

    Google Scholar 

  • [So3] A. Soshnikov, Central limit theorem for local statistics in the classical compact groups and related combinatorial identities, available via http://xxx/lanl/gov/abs/ math/9908063, to appear in Ann. Prob.

  • [So4] A. Soshnikov, Determinantal random point fields, available via http://xxx/lanl/ gov/abs/math/0002099, to appear in Russian Math. Surv.

  • [Sp] H. Spohn, Interacting Brownian particles: A study of Dyson's model, in Hydrodynamic Behavior and Interacting Particle Systems, G. Papanicolau, ed. (Springer-Verlag, New York, 1987).

    Google Scholar 

  • [TW1] C. A. Tracy and H. Widom, Level-spacing distribution and the Airy kernel, Commun. Math. Phys. 159:151–174 (1994).

    Google Scholar 

  • [TW2] C. A. Tracy and H. Widom, Level spacing distribution and the Bessel kernel, Commun. Math. Phys. 161:289–309 (1994).

    Google Scholar 

  • [Wig1] E. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math. 62:548–564 (1955).

    Google Scholar 

  • [Wig2] E. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. of Math. 67:325–328 (1958).

    Google Scholar 

  • [W] K. Wieand, Eigenvalue distribution of random matrices in the permutation group and compact Lie groups (Ph.D. thesis, Dept. Math. Harvard, 1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soshnikov, A.B. Gaussian Fluctuation for the Number of Particles in Airy, Bessel, Sine, and Other Determinantal Random Point Fields. Journal of Statistical Physics 100, 491–522 (2000). https://doi.org/10.1023/A:1018672622921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018672622921

Navigation