Skip to main content
Log in

Fractional Brownian Motions and Enhanced Diffusion in a Unidirectional Wave-Like Turbulence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study transport in random undirectional wave-like velocity fields with nonlinear dispersion relations. For this simple model, we have several interesting findings: (1) In the absence of molecular diffusion the entire family of fractional Brownian motions (FBMs), persistent or anti-persistent, can arise in the scaling limit. (2) The infrared cutoff may alter the scaling limit depending on whether the cutoff exceeds certain critical value or not. (3) Small, but nonzero, molecular diffusion can drastically change the scaling limit. As a result, some regimes stay intact; some (persistent) FBM regimes become non-Gaussian and some other FBM regimes become Brownian motions with enhanced diffusion coefficients. Moreover, in the particular regime where the scaling limit is a Brownian motion in the absence of molecular diffusion, the vanishing molecular diffusion limit of the enhanced diffusion coefficient is strictly larger than the diffusion coefficient with zero molecular diffusion. This is the first such example that we are aware of to demonstrate rigorously a nonperturbative effect of vanishing molecular diffusion on turbulent diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. J. Adler, Geometry of Random Fields (Wiley, New York, 1981).

    Google Scholar 

  2. R. J. Adler, An Introduction to Continuity Extrema and Related Topics for General Gaussian Processes, Inst. of Math. Stat., Hayward Lecture Notes, Vol. 12.

  3. M. Avellaneda and A. J. Majda, Mathematical models with exact renormalization for turbulent transport, Comm. Math. Phys. 131:381–429 (1990).

    Google Scholar 

  4. P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968).

    Google Scholar 

  5. P. Castiglione, A. Crisanti, A. Mazzino, M. Vergassola, and A. Vulpiam, Resonant enhanced diffusion in time-dependent flow, J. Phys. A 31(35):7197–7210 (1998).

    Google Scholar 

  6. I. T. Drummond, Path-integral methods for turbulent diffusion, J. Fluid Mech. 123:59–68 (1982).

    Google Scholar 

  7. I. T. Drummond, S. Duane, and R. R. Horgan, Scalar diffusion in simulated helical turbulence with molecular diffusivity, J. Fluid. Mech. 138:75 (1984).

    Google Scholar 

  8. A. Fannjiang, Phase diagram for turbulent transport: Sampling drift, eddy diffusivity and variational principles, Physica D 136(1–2):145–174 (1999).

    Google Scholar 

  9. A. Fannjiang and T. Komorowski, An invariance principle for diffusion in turbulence, Ann. Prob. 27(2):751–781 (1999).

    Google Scholar 

  10. A. Fannjiang and T. Komorowski, Diffusion approximation for particle convection in Markovian flow, Bull. Polish Acad. Sci. 48:253 (2000).

    Google Scholar 

  11. A. Fannjiang and T. Komorowski, Fractional-Brownian-motion limit for a model of turbulent transport, Ann. Appl. Probab. (in press).

  12. A. Fannjiang and G. Papanicolaou, Convection enhanced diffusion for periodic flows, SIAM J. Appl. Math. 54(2):333–408 (1994).

    Google Scholar 

  13. A. Fannjiang and G. Papanicolaou, Convection enhanced diffusion for random flows, J. Stat. Phys. 88 (5–6):1033–1076 (1997).

    Google Scholar 

  14. G. Gaudron, Scaling laws for the advection-diffusion equation, Ann. of Appl. Prob. 8:649–663 (1998).

    Google Scholar 

  15. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer-Verlag, Berlin/New York, 1977).

    Google Scholar 

  16. M. I. Gordin, On the central limit theorem for stationary processes, Soviet Math. Dokl. 10:1174–1176 (1969).

    Google Scholar 

  17. I. S. Helland, Central limit theorems for martingales with discrete or continuous time, Scan. J. Statist. 9:79–94 (1982).

    Google Scholar 

  18. M. B. Isichenko, Percolation, statistical topography, and transport in random media, Rev. Mod. Phys. 64(4):961–1043 (1992).

    Google Scholar 

  19. H. Kesten and G. Papanicolaou, A limit, theorem in turbulent, diffusion, Comm. Math. Phys. 65:97–128 (1979).

    Google Scholar 

  20. E. Knobloch and W. J. Merryfield, Enhancement of diffusive transport in oscillatory flows, Astrophys. J. 401(1):196–205 (1992).

    Google Scholar 

  21. A. J. Majda and P. R. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling and physical phenomena, Phys. Rep. 314:237–574 (1999).

    Google Scholar 

  22. A. Mazzino and M. Vergassola, Interference between turbulent and molecular diffusion, Europhys. Lett. 37(8):535–540 (1997).

    Google Scholar 

  23. I. Mezić, J. F. Brady, and S. Wiggins, Maximal effective diffusivity for time-periodic incompressible fluid flows, SIAM J. Appl. Math. 56(1):40–56 (1996).

    Google Scholar 

  24. Yu. A. Rozanov, Stationary Random Processes (Holden-Day, 1967).

  25. P. G. Saffman, On the effect of molecular diffusivity in turbulent diffusion, J. Fluid Mech. 8:73 (1960).

    Google Scholar 

  26. G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance (Chapman and Hall, New York, 1994).

    Google Scholar 

  27. D. Strook, S. R. S. Varadhan, Multidimensional Diffusion Processes (Springer-Verlag, Berlin/Heidelberg/New York, 1979).

  28. V. E. Zakharov, V. S. L'vov, and G. Falkovich, Kolmogorov Spectra of Turbulence (Springer-Verlag, Berlin-New York, 1992).

  29. Q. Zhang and J. Glimm, Inertial range scaling of laminar shear flow as a model of turbulent transport, Comm. Math. Phys. 146(2):217–229 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fannjiang, A., Komorowski, T. Fractional Brownian Motions and Enhanced Diffusion in a Unidirectional Wave-Like Turbulence. Journal of Statistical Physics 100, 1071–1095 (2000). https://doi.org/10.1023/A:1018738009970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018738009970

Navigation