Skip to main content
Log in

Stieltjes Integrals of Hölder Continuous Functions with Applications to Fractional Brownian Motion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We give a new estimate on Stieltjes integrals of Hölder continuous functions and use it to prove an existence-uniqueness theorem for solutions of ordinary differential equations with Hölder continuous forcing. We construct stochastic integrals with respect to fractional Brownian motion, and establish sufficient conditions for its existence. We prove that stochastic differential equations with fractional Brownian motion have a unique solution with probability 1 in certain classes of Hölder-continuous functions. We give tail estimates of the maximum of stochastic integrals from tail estimates of the Hölder coefficient of fractional Brownian motion. In addition we apply the techniques used for ordinary Brownian motion to construct stochastic integrals of deterministic functions with respect to fractional Brownian motion and give tail estimates of its maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. N. Kolmogorov, Wiener screw-line and other interesting curves in Hilbert space, Doklady Akad. Nauk 26:115–118 (1940).

    Google Scholar 

  2. P. Lévy, Processes Stochastiques et Movement Brownien (Paris, 1948, 2nd ed., 1965).

  3. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10:422–437 (1968).

    Google Scholar 

  4. A. Goldman, Estimations analytiques concernant le mouvement brownien fractionnaire à plusieurs parametres, C. R. Acad. Sci. Paris, Sér. I 298:91–93 (1984).

    Google Scholar 

  5. J.-P. Kahane, Some random series of functions, Cambridge Studies in Adv. Math. 5 (1985).

  6. J.-P. Kahane, Sur les mouvements browniens fractionnaires: images, graphes, niveaux, C. R. Acad. Sci. Paris, Sér. I 300:501–503 (1985).

    Google Scholar 

  7. A. Le Breton, Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion, Statist. Probab. Lett. 38:263–274 (1998).

    Google Scholar 

  8. G. M. Molchan, Maximum of fractional Brownian motion: probabilities of small values (preprint).

  9. Ya. G. Sinai, On the distribution of the maximum of fractional Brownian motion, Uspekhi Mat. Nauk 52:119–138 (1997).

    Google Scholar 

  10. M. Talagrand, Hausdorff measure of trajectories of multiparameter fractional Brownian motion, Ann. Probab. 23:767–775 (1995).

    Google Scholar 

  11. M. Talagrand, Lower classes for fractional Brownian motion, J. Theoret. Probab. 9: 191–213 (1996).

    Google Scholar 

  12. M. Weber, Dimension de Hausdorff et points multiples du mouvement brownien fraction-naire dans ℝn, C. R. Acad. Sci. Paris, Sér. I 297:357–360 (1983).

    Google Scholar 

  13. Y. Xiao, Hausdorff-type measures of the sample paths of fractional Brownian motion, Stochastic Process. Appl. 74:251–272 (1998).

    Google Scholar 

  14. M. Yor, Remarques sur certaines constructions des mouvements browniens fractionnaires, Séminaire de Probabilités, XXII, Lecture Notes in Math., Vol. 1321 (Springer, Berlin/New York, 1988), pp. 217–224.

    Google Scholar 

  15. S. J. Lin, Stochastic analysis of fractional Brownian motions, Stochastics Rep. 55:121–140 (1995).

    Google Scholar 

  16. W. Dai and C. C. Heyde, It'ôs formula with respect to fractional Brownian motion and its application, J. Appl. Math. Stochastic Anal. 9:439–448 (1996).

    Google Scholar 

  17. L. Decreusefond and Ñstuünel, Ali Süleyman, Application du calcul des variations stochastiques au mouvement brownien fractionnaire, C. R. Acad. Sci. Paris, Sér. I 321:1605–1608 (1995).

    Google Scholar 

  18. L. C. Young, An inequality of the Ho¢ lder type connected with Stieltjes integration, Acta Math. 67:251–282 (1936).

    Google Scholar 

  19. V. Kondurar, Sur l'intégrale de Stieltjes, Mat. Sbornik 2:361–366 (1937).

    Google Scholar 

  20. A. M. Dyachkov, Conditions for the existence of Stieltjes integral of functions of bounded generalized variation, Anal. Math. 14(4):295–313 (1988).

    Google Scholar 

  21. A. A. Ruzmaikina, Stochastic Calculus with Fractional Brownian Motion, Ph.D. thesis (Princeton University, 1999).

  22. E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14 (AMS, 1997).

  23. D. Slepian, The one-sided barrier problem for Gaussian noise, Bell System Tech. J. 41:463–501 (1962).

    Google Scholar 

  24. X. Fernique, Régularitédes trajectoires des fonctions aléatoires gaussiennes, École d'Eté de Probabilités de Saint-Flour, avril 1974, Lecture Notes in Math., Vol. 480 (Springer, Berlin, 1975), pp. 47–52.

    Google Scholar 

  25. H. P. McKean Jr., Stochastic Integrals, Probability and Mathematical Statistics, Vol. 5 (Academic Press, 1969).

  26. D. Feyel and A. de La Pradelle, On fractional Brownian processes, Potential Anal. 10:273–288 (1999).

    Google Scholar 

  27. M. Zähle, Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields 111:333–374 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruzmaikina, A.A. Stieltjes Integrals of Hölder Continuous Functions with Applications to Fractional Brownian Motion. Journal of Statistical Physics 100, 1049–1069 (2000). https://doi.org/10.1023/A:1018754806993

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018754806993

Navigation