Skip to main content
Log in

Stronger-Than-Quantum Correlations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

After an elementary derivation of Bell's inequality, classical, quantum mechanical, and stronger-than-quantum correlation functions for 2-particle-systems are discussed. Special functions are investigated which give rise to an extreme violation of Bell's inequality by the value of 4. Referring to a specific quantum system it is shown that under certain conditions such an extreme violation would contradict basic laws of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. John S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195-200 (1964). Reprinted in Ref. 25, pp. 403-408.

    Google Scholar 

  2. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880-884 (1969).

    Google Scholar 

  3. J. F. Clauser and A. Shimony, “Bell's theorem: experimental tests and implications,” Rep. Prog. Phys. 41, 1881-1926 (1978).

    Google Scholar 

  4. B. S. Cirel'son, “Quantum generalization of Bell's inequality,” Lett. Math. Phys. 4, 93-100 (1980).

    Google Scholar 

  5. B. S. Cirel'son (Tsirelson), “Some results and problems on quantum Bell-type inequalities,” Hadronic J. Suppl. 8, 329-345 (1993).

    Google Scholar 

  6. Abner Shimony, “Controllable and uncontrollable nonlocality,” in S. Kamefuchi et al., ed., Proceedings of the International Symposium on the Foundations of Quantum Mechanics (Physical Society of Japan, Tokyo, 1984), pp. 225-230. See also J. Jarrett, “Bell's Theorem, Quantum Mechanics and Local Realism,” Ph.D. thesis, University of Chicago, 1983; Noûs 18, 569 (1984).

    Google Scholar 

  7. Abner Shimony, Events and processes in the quantum world, in R. Penrose and C. I. Isham, eds., Quantum Concepts in Space and Time (Clarendon Press, Oxford, 1986), pp. 182-203.

    Google Scholar 

  8. S. Popescu and D. Rohrlich, “Quantum nonlocality as an axiom,” Found. Phys. 243, 379-358 (1994).

    Google Scholar 

  9. D. Rohrlich and S. Popescu, in A. Mann and M. Revzen, eds., The Dilemma of Einstein, Podolsky, and Rosen 60 Years Later (Adam Hilger, Bristol, in press); Ann. Israel Phys. Soc. 12.

  10. J. Grunhaus, S. Popescu, and D. Rohrlich, “Jamming nonlocal quantum correlations,” Phys. Rev. A 53, 3781 (1996).

    Google Scholar 

  11. S. Popescu and D. Rohrlich, in R. S. Cohen, M. A. Horne, and J. Stachel, eds., Quantum Potentiality, Entanglement, and Passion-at-a-Distance: Essays for Abner Shimony (Kluwer Academic, Dordrecht, in press).

  12. Günther Krenn, “The probabilistic origin of Bell's inequality,” in D. Han, Y. S. Kim, N. H. Rubin, Y. Shih, and W. W. Zachary, eds., Proceedings of the Third International Workshop on Squeezed States and Uncertainty Relations (Maryland, August 10-13, 1993) (NASA Conference publication Nr. 3270, Greenbelt, Maryland 20771, August 1993), pp. 603-608.

  13. Asher Peres, “Unperformed experiments have no results,” Am. J. Phys. 46, 745-747 (1978).

    Google Scholar 

  14. Asher Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  15. N. Gisin and A. Peres, Maximal violation of Bell's inequality for arbitrarily large spin, Phys. Lett. A 162, 15-17 (1992).

    Google Scholar 

  16. D. Aerts, “Example of a macroscopic classical situation that violates Bell inequalities,” Lett. Nuovo Cimento 344, 107-111 (1982). The suggested analogy to two entangled spin-12 particles is challenged by the fact that the proposed expectation functions are not invariant with respect to temporal order.

    Google Scholar 

  17. Daniel M. Greenberger, Mike A. Horne, and Anton Zeilinger, “Going beyond bell's theorem,” in M. Kafatos, ed., Bell's Theorem, Quantum Theory, and Conceptions of the Universe (Kluwer Academic, Dordrecht, 1989), pp. 73-76. See also Refs. 22 and 26.

    Google Scholar 

  18. S. M. Roy and V. Singh, “Hidden variable theories without nonlocal signalling and their experimental tests,” Phys. Lett. A 1399, 437-441 (1989).

    Google Scholar 

  19. L. Khalfin and B. Tsirelson, In P. Lahti, ed., Symposium on the Foundations of Modern Physics '85 (World Scientific, Singapore, 1985), p. 441.

    Google Scholar 

  20. P. Rastall, Found. Phys. 15, 963 (1995).

    Google Scholar 

  21. S. Summers and R. Werner, J. Math. Phys. 28, 2440, 1987.

    Google Scholar 

  22. Daniel M. Greenberger, Mike A. Horne, A. Shimony, and Anton Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990).

    Google Scholar 

  23. N. D. Mermin, Am. J. Phys. 58, 731 (1990).

    Google Scholar 

  24. G. Krenn and A. Zeilinger, “Entangled entanglement,” Phys. Rev. A 543, 1793-1797 (1996).

    Google Scholar 

  25. John Archibald Wheeler and Wojciech Hubert Zurek, Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).

    Google Scholar 

  26. N. D. Mermin, “What's wrong with these elements of reality?” Phys. Today 436, 9-10 (June 1990).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krenn, G., Svozil, K. Stronger-Than-Quantum Correlations. Foundations of Physics 28, 971–984 (1998). https://doi.org/10.1023/A:1018821314465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018821314465

Keywords

Navigation