Skip to main content
Log in

Dyadic Hermite interpolation on a rectangular mesh

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Given f and ∇f at the vertices of a rectangular mesh, we build an interpolating function f by a subdivision algorithm. The construction on each elementary rectangle is independent of any disjoint rectangle. From the Hermite data associated with the vertices of a rectangle R, the function f is defined on a dense subset of R. Sufficient conditions are found in order to extend f to a C 1 function. Moreover, infinite products and generalized radii of matrices are used to study the convergence to a C 1 function. This convergence depends on the five parameters introduced in the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M.A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992) 21-27.

    Article  MATH  MathSciNet  Google Scholar 

  2. I. Daubechies and J.C. Lagarias, Set of matrices all infinite products of which converge, Linear Algebra Appl. 161 (1992) 227-263.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Deslauriers and S. Dubuc, Interpolation dyadique, in: Fractals. Dimensions Non Entières et Applications (Masson, Paris, 1987) pp. 44-55.

    Google Scholar 

  4. G. Deslauriers, J. Dubois and S. Dubuc, Multidimensional iterative interpolation, Canad. J. Math. 43 (1991) 127-147.

    MathSciNet  Google Scholar 

  5. S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986) 185-204.

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Dyn, D. Levin and J.A. Gregory, A 4-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Design 4 (1987) 257-268.

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Dyn and D. Levin, Analysis of Hermite-type subdivision schemes, in: Approximation Theory VIII, Vol. 2: Wavelets and Multilevel Approximation, eds. C.K. Chui and L.L. Schumaker (World Scientific, Singapore, 1995) pp. 117-124.

    Google Scholar 

  8. L. Elsner, The generalized spectral-radius theorem: An analytic-geometric proof, Linear Algebra Appl. 220 (1995) 151-159.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Gripenberg, Computing the joint spectral radius, Linear Algebra Appl. 234 (1996) 43-60.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.-L. Merrien, A family of Hermite interpolants by bisection algorithms, Numer. Algorithms 2 (1992) 187-200.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.-L. Merrien, Interpolants d'Hermite C 2 obtenus par subdivision, to appear in M2AN.

  12. R. Sibson and G.D. Thomson, A seamed quadratic element for contouring, Comput. J. 24 (1980) 378-382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubuc, S., Merrien, JL. Dyadic Hermite interpolation on a rectangular mesh. Advances in Computational Mathematics 10, 343–365 (1999). https://doi.org/10.1023/A:1018943002601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018943002601

Navigation