Skip to main content
Log in

Stability results for scattered‐data interpolation on Euclidean spheres

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let \(S^m\) denote the unit sphere in \(R^{m + 1}\) and \(d_m\) the geodesic distance in \(S^m\). A spherical‐basis function approximant is a function of the form \(s\left( x \right) = \sum\nolimits_{j = 1}^M {a_j \varphi \left( {d_m \left( {x,x_j } \right)} \right)\;x \in S^m }\), where \(\left( {a_j } \right)_1^M\) are real constants, \(\varphi :\left[ {0,{\pi }} \right] \to R\) is a fixed function, and \(\left( {x_j } \right)_1^M\) is a set of distinct points in \(S^m\). It is known that if \(\varphi\) is a strictly positive definite function in \(S^m\), then the interpolation matrix \(\left( {\varphi \left( {d_m \left( {x_j ,x_k } \right)} \right)} \right)_{j,k = 1}^M\) is positive definite, hence invertible, for every choice of distinct points \(\left( {x_j } \right)_1^M\) and every positive integer M. The paper studies a salient subclass of such functions \(\varphi\), and provides stability estimates for the associated interpolation matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ball, Eigenvalues of Euclidean distance matrices, J. Approx. Theory 68 (1992) 74–82.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. Ball, N. Sivakumar and J.D. Ward, On the sensitivity of radial basis interpolation to minimal data separation distance, Constr. Approx. 8 (1992) 401–426.

    Article  MATH  MathSciNet  Google Scholar 

  3. B.J.C. Baxter, Norm estimates for inverses of Toeplitz distance matrices, J. Approx. Theory 79 (1994) 222–242.

    Article  MATH  MathSciNet  Google Scholar 

  4. M.D. Buhmann, New developments in the theory of radial basis function interpolation, in: Multivariate Approximation: From CAGD to Wavelets, eds. K. Jetter and F.I. Utreras (World Scientific, Singapore, 1993) pp. 35–76.

    Google Scholar 

  5. E.W. Cheney, Approximation using positive definite functions, in: Approximation Theory VIII, Vol. 1, Approximation and Interpolation, eds. C.K. Chui and L.L. Schumaker (World Scientific, Singapore, 1996) pp. 145–168.

    Google Scholar 

  6. N. Dyn, Interpolation and approximation by radial and related functions, in: Approximation Theory VI, Vol. 1, eds. C.K. Chui, L.L. Schumaker and J.D. Ward (Academic Press, New York, 1989) pp. 211–234.

    Google Scholar 

  7. N. Dyn, F.J. Narcowich and J.D. Ward, Variational principles and Sobolev-type estimates for generalized interpolation on a Riemannian manifold, Constr. Approx., to appear.

  8. G.E. Fasshauer, Hermite interpolation with radial basis functions on spheres, Preprint.

  9. G.E. Fasshauer, On the density of certain classes of radial basis functions on spheres, Preprint.

  10. G.E. Fasshauer, Scattered data interpolation with radial basis functions on the sphere, Preprint.

  11. A.E. Ingham, Some trigonometric inequalities with applications to the theory of series, Math. Z. 41 (1936) 367–379.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Jetter and J. Stöckler, A generalization of de Boor's stability result and symmetric preconditioning, Adv. Comput. Math. 3 (1995) 353–367.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Levesley, Z. Luo and X. Sun, Norm estimates of interpolation matrices and their inverses associated with strictly positive definite functions, Proc. Amer. Math. Soc. (to appear).

  14. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions, I, Approx. Theory Appl. 4 (1988) 77–89.

    MATH  MathSciNet  Google Scholar 

  15. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions, II, Math. Comp. 54 (1990) 211–230.

    Article  MATH  MathSciNet  Google Scholar 

  16. V.A. Menegatto, Interpolation on spherical domains, Analysis 14 (1994) 415–424.

    MATH  MathSciNet  Google Scholar 

  17. V.A. Menegatto, Strictly positive definite functions on the circle, Rocky Mountain J. Math. 25 (1995) 1149–1163.

    Article  MATH  MathSciNet  Google Scholar 

  18. V.A. Menegatto, Condition numbers associated with radial-function interpolation on spheres, Preprint (1997).

  19. C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986) 11–22.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Müller, Spherical Harmonics (Springer, Berlin, 1966).

    MATH  Google Scholar 

  21. F.J. Narcowich, Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold, J. Math. Anal. Appl. 190 (1995) 165–193.

    Article  MATH  MathSciNet  Google Scholar 

  22. F.J. Narcowich, N. Sivakumar and J.D. Ward, On condition numbers associated with radial-function interpolation, J. Math. Anal. Appl. 186 (1994) 457–485.

    Article  MATH  MathSciNet  Google Scholar 

  23. F.J. Narcowich and J.D. Ward, Norms of inverses and condition numbers for matrices associated with scattered data, J. Approx. Theory 64 (1991) 69–94.

    Article  MATH  MathSciNet  Google Scholar 

  24. F.J. Narcowich and J.D. Ward, Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices, J. Approx. Theory 69 (1992) 84–109.

    Article  MATH  MathSciNet  Google Scholar 

  25. F.J. Narcowich and J.D. Ward, Nonstationary wavelets on the m-sphere for scattered data, Appl. Comput. Harmonic Anal. 3 (1996) 1–13.

    Article  MATH  Google Scholar 

  26. M.J.D. Powell, The theory of radial basis function approximation in 1990, in: Advances in Numerical Analysis II, ed. W.A. Light (Clarendon Press, Oxford, 1992) pp. 106–210.

    Google Scholar 

  27. A. Ron and X. Sun, Strictly positive definite functions on spheres in Euclidean spaces, Math. Comp. 65 (1996) 1513–1530.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Schaback, Lower bounds for norms of inverses of interpolation matrices for radial basis functions, J. Approx. Theory 79 (1994) 287–306.

    Article  MATH  MathSciNet  Google Scholar 

  29. I.J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942) 96–108.

    Article  MATH  MathSciNet  Google Scholar 

  30. I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Part A, Quart. Appl. Math. IV (1946) 45–99.

    MathSciNet  Google Scholar 

  31. I.J. Schoenberg, Cardinal interpolation and spline functions, J. Approx. Theory 2 (1969) 167–206.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Schreiner, On a new condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 125 (1997) 531–539.

    Article  MATH  MathSciNet  Google Scholar 

  33. X. Sun, Norm estimates for inverses of Euclidean distance matrices, J. Approx. Theory 70 (1992) 339–347.

    Article  MATH  MathSciNet  Google Scholar 

  34. Y. Xu and E.W. Cheney, Strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 116 (1992) 977–981.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narcowich, F., Sivakumar, N. & Ward, J. Stability results for scattered‐data interpolation on Euclidean spheres. Advances in Computational Mathematics 8, 137–163 (1998). https://doi.org/10.1023/A:1018996230401

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018996230401

Keywords

Navigation