Skip to main content
Log in

Nonautonomous systems, cocycle attractors and variable time-step discretization

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The concept of an attractor for autonomous systems is generally too restrictive in the nonautonomous context. An appropriate generalization is the cocycle attractor which consists of a family of equivariant sets. Here the cocycle description of a nonautonomous system and the concept of a cocycle attractor are reviewed in the context of nonautonomous ordinary differential equations and variable time-step numerical schemes for autonomous ordinary differential equations. In the latter case, theorems are stated for the existence and convergence of numerical cocycle attractors to an assumed attractor of an autonomous ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arnold, —Zufällige dynamische Systeme, Jahresber. Deutch. Math.-Verein. 96 (1994) 85–100.

    MATH  Google Scholar 

  2. L. Arnold and P. E. Kloeden, Discretization of a random dynamical system near a hyperbolic point, Mathemetische Nachrichten (to appear).

  3. A. V. Babin and M. I. Vishik, Maximal attractors of semigroups corresponding to evolution equation, Math. USSR Sbornik 54(2) (1986).

  4. V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994) 279–333.

    MATH  MathSciNet  Google Scholar 

  5. F. Flandoli and B. Schmalfuß, Attractors for the stochastic Navier-Stokes equation with multiplicative noise, Stochastics (to appear).

  6. J. Hale, Asymptotic Behavior of Dissipative Dynamical Systems (Amer. Math. Soc., Providence, RI, 1988).

  7. G. Hall, Equilibrium states of Runge-Kutta schemes, ACM Trans. Math. Software 11 (1985) 289–301.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and their one-step discretizations, SIAM J. Numer. Anal. 23 (1986) 986–995.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. E. Kloeden and B. Schmalfuß, Lyapunov functions and attractors under variable time-step discretization, Discrete & Continuous Dynamical Systems 2 (1996) 163–172.

    Article  MATH  Google Scholar 

  10. P. E. Kloeden and B. Schmalfuß, Cocycle attractors sets of variable time-step discretizations of Lorenzian systems, J. Difference Eqns. Applns. (to appear).

  11. P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations, CADSEM Report 96–010, Deakin University (May 1996).

  12. B. Schmalfuß, The stochastic attractor of the stochastic Lorenz system, in: Nonlinear Dynamics: Attractor Approximation and Global Behaviour, Proc. ISAM 92, eds. N. Koksch, V. Reitmann and T. Riedrich (TU Dresden, 1992) pp. 185–192.

  13. B. Schmalfuß, Backward cocycles and attractor for the nonautonomous two dimensional Navier- Stokes equations, Technical Report Nr. 304, Institut für Dynamische Systeme, Universität Bremen (April 1994).

  14. G. R. Sell, Nonautonomous differential equations and topological dynamics I & II, Trans. Amer. Math. Soc. 127 (1967) 241–262, 263–283.

  15. G. R. Sell, Lectures on Topological Dynamics and Differential Equations (Van Nostrand-Reinhold, London, 1971).

    Google Scholar 

  16. D. Stoffer and K. Nipp, Invariant curves for variable step-size integrators, BIT 31 (1991) 169–180; 32 (1992) 367–368.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. M. Stuart, Numerical analysis of dynamical systems, Acta Numerica 2 (1994) 467–572.

    MATH  MathSciNet  Google Scholar 

  18. A. M. Stuart and A. R. Humphries, Numerical Analysis and Dynamical Systems (Cambridge Univ. Press, Cambridge, 1996).

    MATH  Google Scholar 

  19. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Springer, Heidelberg, 1988).

    MATH  Google Scholar 

  20. M. I. Vishik, Asymptotic Behaviour of Solutions of Evolution Equations (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  21. T. Yoshizawa, Stability Theory by Lyapunov's Second Method (The Mathematical Society of Japan, Tokyo, 1966).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloeden, P.E., Schmalfuß, B. Nonautonomous systems, cocycle attractors and variable time-step discretization. Numerical Algorithms 14, 141–152 (1997). https://doi.org/10.1023/A:1019156812251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019156812251

Navigation