Skip to main content
Log in

Scenarios for Multistage Stochastic Programs

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A major issue in any application of multistage stochastic programming is the representation of the underlying random data process. We discuss the case when enough data paths can be generated according to an accepted parametric or nonparametric stochastic model. No assumptions on convexity with respect to the random parameters are required. We emphasize the notion of representative scenarios (or a representative scenario tree) relative to the problem being modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Birge, Decomposition and partitioning methods for multistage stochastic linear programs, Oper. Res. 33 (1985) 989–1007.

    Google Scholar 

  2. J.R. Birge and J.M. Mulvey, Stochastic programming, in: Mathematical Programming for Industrial Engineers, eds. M. Avriel and B. Golany (Dekker, New York, 1996) pp. 543–574.

    Google Scholar 

  3. J.R. Birge and C.H. Rosa, Modeling investment uncertainty in the costs of global CO2 emission policy, EJOR 83 (1995) 466–488.

    Google Scholar 

  4. J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King and S.W. Wallace, A standard input format for multiperiod stochastic linear programs, Mathematical Programming Society, COAL Newsletter 17 (1987) 1–20.

    Google Scholar 

  5. O.J. Botnen, A. Johannesen, A. Haugstad, S. Kroken and O. Frøystein, Modelling of hydropower scheduling in a national/international context, in: Hydropower '92, eds. E. Broch and D.K. Lysne (Balkema, Rotterdam, 1996) pp. 575–584.

    Google Scholar 

  6. S.P. Bradley and D.B. Crane, A dynamic model for bond portfolio management, Manag. Sci. 19 (1972) 139–151.

    Google Scholar 

  7. S.P. Bradley and D.B. Crane, Managing a bank bond portfolio over time, in: Stochastic Programming, ed. M.A.H. Dempster (Academic Press, London, 1980) pp. 449–471.

    Google Scholar 

  8. E. Canestrelli and S. Giove, Scenarios identification for financial time series, in: Current Topics in Quantitative Finance, ed. E. Canestrelli (Physica-Verlag, 1999) pp. 25–36.

  9. D.R. Cariño, D.H. Myers and W.T. Ziemba, Concepts, technical issues and uses of the Russell–Yasuda Kasai financial planning model, Oper. Res. 46 (1998) 450–462.

    Google Scholar 

  10. Z. Chen, G. Consigli. M.A.H. Dempster and N. Hicks-Pedrón, Towards sequential sampling algorithms for dynamic portfolio management, in: New Operational Tools for the Management of Financial Risks, ed. C. Zopounidis (Kluwer, 1997) pp. 197–211.

  11. G. Consigli, Dynamic stochastic programming for asset and liability management, Ph.D. thesis, University of Essex (1997).

  12. G. Consigli and M.A.H. Dempster, Dynamic stochastic programming for asset-liability management, Annals of Oper. Res. 81 (1998) 131–161.

    Google Scholar 

  13. H. Dahl, A. Meeraus and S.A. Zenios, Some financial optimization models: II. Financial engineering, in: Financial Optimization, ed. S.A. Zenios (Cambridge University Press, 1993) pp. 37–71.

  14. G.B. Dantzig and G. Infanger, Multi-stage stochastic linear programs for portfolio optimization, Annals of Oper. Res. 45 (1993) 59–76.

    Google Scholar 

  15. R.S. Dembo, Scenario optimization, Annals of Oper. Res. 30 (1991) 63–80.

    Google Scholar 

  16. R.S. Dembo, A. Chiarri, L. Paradinas and J. Gomez, Managing Hidroeléctrica Española's hydroelectric power system, Interfaces 20 (1990) 115–135.

    Google Scholar 

  17. M.A.H. Dempster, On stochastic programming II: Dynamic problems under risk, Stochastics 25 (1988) 15–42.

    Google Scholar 

  18. M.A.H. Dempster, Sequential importance sampling algorithms for dynamic stochastic programming, WP 32/98, The Judge Inst. of Management Studies, Cambridge Univ. (1998).

  19. M.A.H. Dempster and A.M. Ireland, A financial expert decision support system, in: Mathematical Models for Decision Support, ed. G. Mitra, NATO ASI Series, Vol. F48 (Springer, Berlin, 1988) pp. 415–440.

    Google Scholar 

  20. M.A.H. Dempster and A.M. Ireland, Object oriented model integration in financial decision support systems, Decision Support Systems 7 (1991) 329–340.

    Google Scholar 

  21. M.A.H. Dempster and R.T. Thompson, EVPI-based importance sampling solution procedures for multistage stochastic linear programmes on parallel MIMD architectures, Annals of Oper. Res. (to appear).

  22. M.A.H. Dempster and A.E. Thorlacius, Stochastic simulation of international economic variables and asset returns: The Falcon asset model, Preprint (1998).

  23. C. Dert, Asset liability management for pension funds. A multistage chance-constrained programming approach, Ph.D. thesis, Erasmus University, Rotterdam (1995).

    Google Scholar 

  24. J. Dupačová, Water resources system modelling using stochastic programming with recourse, in: Recent Results in Stochastic Programming, eds. P. Kall and A. Prékopa, Lecture Notes in Economics and Math. Systems, Vol. 179 (Springer, Berlin, 1980) pp. 121–133.

    Google Scholar 

  25. J. Dupačová, Postoptimality for multistage stochastic linear programs, Annals of Oper. Res. 56 (1995) 65–78.

    Google Scholar 

  26. J. Dupačová, Multistage stochastic programs: The state-of-the art and selected bibliography, Kybernetika 31 (1995) 151–174.

    Google Scholar 

  27. J. Dupačová, Stochastic programming: Approximation via scenarios, Apportaciones mathematicás, Ser. Communicationes 24 (1998) 77–94. Also available via http://www.emis.de/proceedings/index.html.

    Google Scholar 

  28. J. Dupačová, Uncertainty about input data in portfolio management, in: Modelling Techniques for Financial Markets and Bank Management, eds. M. Bertocchi et al. (Physica-Verlag, 1996) pp. 17–33.

  29. O. Egeland, J. Hegge, E. Kylling and J. Nes, The extended power pool model—Operation planning of multi-river and multi-reservoir hydrodominated power production system—a hierarchial approach, Report 32.14, CIGRE (1982).

  30. G.D. Eppen, R.K. Martin and L. Schrage, A scenario approach to capacity planning, Oper. Res. 37 (1989) 517–527.

    Google Scholar 

  31. L.F. Escudero, P.V. Kamesam, A.J. King and R.J.-B. Wets, Production planning via scenario modeling, Annals of Oper. Res. 42 (1993) 311–336.

    Google Scholar 

  32. S.-E. Fleten, S.W. Wallace and W.T. Ziemba, Portfolio management in a deregulated hydropowerbased electricity market, in: Hydropower '97, eds. E. Broch, D.K. Lysne, N. Flatabø and E. Helland-Hansen (Balkema, Rotterdam, 1997).

    Google Scholar 

  33. K. Frauendorfer, Barycentric scenario trees in convex multistage stochastic programming, Math. Progr. 75 (1996) 277–293.

    Google Scholar 

  34. K. Frauendorfer and C. Marohn, Refinement issues in stochastic multistage linear programming, in: Stochastic Programming Methods and Technical Applications, eds. K. Marti and P. Kall, Lecture Notes in Economics and Math. Systems, Vol. 458 (Springer, 1998) pp. 305–328.

  35. H.I. Gassmann, MSLiP: A computer code for the multi-stage stochastic programming problem, Math. Progr. 47 (1990) 407–423.

    Google Scholar 

  36. H.I. Gassmann and A.M. Ireland, Scenario formulation in an algebraic modeling language, Annals of Oper. Res. 59 (1995) 45–75.

    Google Scholar 

  37. H.I. Gassmann and E. Schweitzer, A comprehensive input format for stochastic linear programs, WP–96–1, School of Business Administration, Halifax (1996).

    Google Scholar 

  38. N. Gröwe-Kuska, M.P. Nowak, W. Römisch and I. Wegner, Optimierung eines hydro-thermischen Kraftwerkssystems unter Ungewissheit, Optimierung in der Energieversorgung III, VDI-Berichts Nr. 1508 (Düsseldorf, 1999) pp. 147–157.

  39. P. Hansen and B. Jaumard, Cluster analysis and mathematical programming, Math. Progr. 79 (1997) 191–215.

    Google Scholar 

  40. K. Høyland and S.W.Wallace, Generating scenario trees for multistage decision problems, Technical Report 4/97, Dept. of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Trondheim (1996). To appear in Management Science.

    Google Scholar 

  41. G. Infanger, Planning Under Uncertainty. Solving Large Scale Stochastic Linear Programs (Boyd and Fraser, Danvers, 1994).

    Google Scholar 

  42. J. Jacobs, G. Freeman, J. Grygier, D. Morton, G. Schultz, K. Staschus and J. Stedinger, SOCRATES: A system for scheduling hydroelectric generation under uncertainty, Annals of Oper. Res. 59 (1995) 99–132.

    Google Scholar 

  43. F. Jamshidian and Yu Zhu, Scenario simulation: Theory and methodology, Finance and Stochastics 1 (1997) 43–67.

    Google Scholar 

  44. D.L. Keefer, Certainty equivalents for three-point discrete-distributions approximations, Manag. Sci. 40 (1994) 760–773.

    Google Scholar 

  45. P. Klaassen, Discretized reality and spurious profits in stochastic programming models for asset/ liability management, EJOR 101 (1997) 374–392.

    Google Scholar 

  46. P. Klaassen, Financial asset-pricing theory and stochastic programming models for asset/liability management: A synthesis, Manag. Sci. 44 (1998) 31–48.

    Google Scholar 

  47. Y.A. Koskosidis and A.M. Duarte, A scenario-based approach to active asset allocation, J. of Portfolio Management (Winter 1997) 74–85.

  48. R. Kouwenberg, Scenario generation and stochastic programming models for asset liability management, EJOR (to appear).

  49. R. Kouwenberg and T. Vorst, Dynamic portfolio insurance: A stochastic programming approach, Report 9813, Erasmus Center for Financial Research, Rotterdam (1998).

    Google Scholar 

  50. M. Lane and P. Hutchinson, A model for managing a certificate of deposit portfolio under uncertainty, in: Stochastic Programming, ed. M.A.H. Dempster (Academic Press, London, 1980) pp. 473–495.

    Google Scholar 

  51. W.-K. Mak, D.P. Morton and R.K. Wood, Monte Carlo bounding techniques for determining solution quality in stochastic programs, OR Letters 24 (1999) 47–56.

    Google Scholar 

  52. H.M. Markowitz, Portfolio Selection: Efficient Diversification of Investments (Yale University Press, New Haven, 1959).

    Google Scholar 

  53. E. Messina and G. Mitra, Modelling and analysis of multistage stochastic programming problems: A software environment, EJOR 101 (1997) 343–359.

    Google Scholar 

  54. J.M. Mulvey and A. Ruszczy´nski, A new scenario decomposition method for large-scale stochastic optimization, Oper. Res. 43 (1995) 477–490.

    Google Scholar 

  55. J.M. Mulvey and A.E. Thorlacius, The Towers Perrin global capital market scenario generation system, in [70], pp. 286–312.

  56. J.M. Mulvey and H. Vladimirou, Stochastic network optimization models for investment planning, Annals of Oper. Res. 20 (1989) 187–217.

    Google Scholar 

  57. J.M. Mulvey and S.A. Zenios, Capturing the correlations of fixed-income instruments, Manag. Sci 40 (1994) 1329–1342.

    Google Scholar 

  58. J.M. Mulvey and W.T. Ziemba, Asset and liability management systems for long-term investors: discussion of the issues, in [70], pp. 3–35.

  59. S.S. Nielsen and E.I. Ronn, The valuation of default risk in corporate bonds and interest rate swaps, Advances in Futures and Options Research 9 (1997) 175–196.

    Google Scholar 

  60. S.S. Nielsen and S.A. Zenios, Solving multistage stochastic network programs on massively parallel computers, Math. Progr. 73 (1996) 227–250.

    Google Scholar 

  61. G.Ch. Pflug, Scenario tree generation for multiperiod financial optimization, Math. Progr., Ser. B 89 (2001) 251–271.

    Google Scholar 

  62. P. Popela, An object-oriented approach to multistage stochastic programming: Models and algorithms, Ph.D. thesis, Charles University, Prague (1998).

    Google Scholar 

  63. A. Prékopa, Stochastic Programming (Kluwer, Dordrecht and Akadémiai Kiadó, Budapest, 1995).

    Google Scholar 

  64. R.T. Rockafellar and R.J.-B.Wets, The optimal recourse problem in discrete time: L 1-multipliers for inequality constraints, SIAM J. Control 16 (1978) 16–36.

    Google Scholar 

  65. R.T. Rockafellar and R.J.-B.Wets, Scenario and policy aggregation in optimization under uncertainty, Mathematics of OR 16 (1991) 119–147.

    Google Scholar 

  66. A. Ruszczy´nski, Parallel decomposition of multistage stochastic programming programs, Math. Progr. 58 (1993) 201–228.

    Google Scholar 

  67. J.D. Salas, G.Q. Tabios III and P. Bartolini, Approaches to multivariate modeling of water resources time series, Water Res. Bulletin 21 (1985) 683–708.

    Google Scholar 

  68. J.F. Shapiro, Stochastic programming models for dedicated portfolio selection, in: Mathematical Models for Decision Support, ed. B. Mitra, NATO ASI Series, Vol. F48 (Springer, 1988) pp. 587–611.

  69. S. Takriti, J.R. Birge and E. Long, A stochastic model for the unit commitment problem, IEEE Transactions on Power Systems 11 (1996) 1497–1508.

    Google Scholar 

  70. W.T. Ziemba and J. Mulvey, eds., World Wide Asset and Liability Modeling (Cambridge University Press, 1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupačová, J., Consigli, G. & Wallace, S.W. Scenarios for Multistage Stochastic Programs. Annals of Operations Research 100, 25–53 (2000). https://doi.org/10.1023/A:1019206915174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019206915174

Navigation