Skip to main content
Log in

Scale Invariance of the PNG Droplet and the Airy Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We establish that the static height fluctuations of a particular growth model, the PNG droplet, converges upon proper rescaling to a limit process, which we call the Airy process A(y). The Airy process is stationary, it has continuous sample paths, its single “time” (fixed y) distribution is the Tracy–Widom distribution of the largest eigenvalue of a GUE random matrix, and the Airy process has a slow decay of correlations as y −2. Roughly the Airy process describes the last line of Dyson's Brownian motion model for random matrices. Our construction uses a multi-layer version of the PNG model, which can be analyzed through fermionic techniques. Specializing our result to a fixed value of y, one reobtains the celebrated result of Baik, Deift, and Johansson on the length of the longest increasing subsequence of a random permutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. P. Meakin, Fractals, Scaling, and Growth Far From Equilibrium (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  2. M. Prähofer and H. Spohn, Universal distributions for growth processes in 1+1 dimensions and random matrices, Phys. Rev. Lett. 84:4882-4885 (2000).

    Google Scholar 

  3. J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest increasing subsequence in a random permutation, J. Amer. Math. Soc. 12:1189-1178 (1999).

    Google Scholar 

  4. C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159:151-174 (1994).

    Google Scholar 

  5. M. Prähofer and H. Spohn, Statistical self-similarity of one-dimensional growth processes, Physica A 279:342-352 (2000).

    Google Scholar 

  6. K. Johansson, Non-intersecting paths, random tilings and random matrices, preprint, arXiv: math.PR/0011250.

  7. D. J. Gates and M. Westcott, Stationary states of crystal growth in three dimensions, J. Stat. Phys. 81:681-715 (1995).

    Google Scholar 

  8. M. Prähofer and H. Spohn, An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime, J. Stat. Phys. 88:999-1012 (1997).

    Google Scholar 

  9. G. Viennot, Une forme géométrique de la correspondence de Robinson-Schensted, in Combinatoire et Représentation du Groupe Symétrique, D. Foata, ed., Lecture Notes in Mathematics, Vol. 579 (Springer-Verlag, Berlin, 1977), pp. 29-58.

    Google Scholar 

  10. H. Helfgott, Edge Effects on Local Statistics in Lattice Dimers: A Study of the Aztec Diamond, B.A. thesis, Brandeis University, 1998. arXiv: math.CO/0007136.

  11. M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. IV: Analysis of Operators (Academic Press, New York, 1978).

    Google Scholar 

  12. A. Soshnikov, Determinantal random point fields, Russ. Math. Surv. 55:923-975 (2000). arXiv: math.PR/0002099.

    Google Scholar 

  13. H. Spohn, Interacting Brownian particles: A study of Dyson's model, in Hydrodynamic Behavior and Interacting Particle Systems, G. Papanicolaou, ed. (Springer-Verlag, New York, 1987).

    Google Scholar 

  14. M. Abramowitz and I. A. Stegun (eds.), Pocketbook of Mathematical Functions (Verlag Harri Deutsch, Thun; Frankfurt/Main, 1984).

    Google Scholar 

  15. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2 (Springer-Verlag, New York, 1997).

    Google Scholar 

  16. K. Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. Math. 153:259-296 (2001).

    Google Scholar 

  17. L. J. Landau, Bessel functions: Monotonicity and bounds, J. London Math. Society 61:197-215 (2000).

    Google Scholar 

  18. A. Borodin, A. Okounkov, and G. Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc. 13:481-515 (2000).

    Google Scholar 

  19. P. J. Forrester, The spectrum edge of random matrix ensembles, Nucl. Phys. B 402:709-728 (1993).

    Google Scholar 

  20. D. C. Mattis and E. H. Lieb, Exact solution of a many-fermion system and its associated Boson field, J. Math. Phys. 6:304-312 (1965).

    Google Scholar 

  21. M. Salmhofer, Renormalization, an Introduction, Text and Monographs in Physics (Springer, Berlin, 1999).

    Google Scholar 

  22. J. Baik and E. Rains, Symmetrized random permutations, in Random Matrix Models and Their Applications, P. Bleher and A. Its, eds., MSRI Publications, Vol. 40 (Cambridge University Press, Cambridge, 2001), pp. 1-19.

    Google Scholar 

  23. O. Kallenberg, Foundations of Modern Probability (Springer-Verlag, New York, 1997).

    Google Scholar 

  24. J. Kerstan, Infinitely Divisible Point Processes (Wiley, New York, 1978).

    Google Scholar 

  25. A. Okounkov and N. Reshetikhin, Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, preprint, math.CO/ 0107056.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prähofer, M., Spohn, H. Scale Invariance of the PNG Droplet and the Airy Process. Journal of Statistical Physics 108, 1071–1106 (2002). https://doi.org/10.1023/A:1019791415147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019791415147

Navigation