Skip to main content
Log in

Rigidity of the Interface in Percolation and Random-Cluster Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study conditioned random-cluster measures with edge-parameter p and cluster-weighting factor q satisfying q≥1. The conditioning corresponds to mixed boundary conditions for a spin model. Interfaces may be defined in the sense of Dobrushin, and these are proved to be “rigid” in the thermodynamic limit, in three dimensions and for sufficiently large values of p. This implies the existence of non-translation-invariant (conditioned) random-cluster measures in three dimensions. The results are valid in the special case q=1, thus indicating a property of three-dimensional percolation not previously noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. L. Dobrushin, Gibbs state describing coexistence of phases for a three-dimensional Ising model, Theory Probab. Appl. 18:582-600 (1972).

    Google Scholar 

  2. C. M. Fortuin, On the random cluster model. II. The percolation model, Phys. 58:393-418 (1972).

    Google Scholar 

  3. C. M. Fortuin, On the random cluster model. III. The simple random-cluster process, Phys. 59:545-570 (1972).

    Google Scholar 

  4. C. M. Fortuin and P. W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models, Phys. 57:536-564 (1972).

    Google Scholar 

  5. G. R. Grimmett, The random-cluster model, in Probability, Statistics and Optimisation, F. P. Kelly, ed. (Wiley, Chichester, 1994), pp. 49-63.

    Google Scholar 

  6. M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, x–y 2 Ising and Potts models, J. Statist. Phys. 50:1-40 (1988).

    Google Scholar 

  7. C. E. Bezuidenhout, G. R. Grimmett, and H. Kesten, Strict inequality for critical values of Potts models and random-cluster processes, Comm. Math. Phys. 158:1-16 (1993).

    Google Scholar 

  8. R. Cerf and Á. Pisztora, On the Wulff crystal in the Ising model, Ann. Probab. 28:947-1017 (2000).

    Google Scholar 

  9. H.-O. Georgii, O. Häggström, and C. Maes, The random geometry of equilibrium phases, in Phase Transitions and Critical Phenomena, Vol. 18, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 2000), pp. 1-142.

    Google Scholar 

  10. G. R. Grimmett, Comparison and disjoint-occurrence inequalities for random-cluster models, J. Statist. Phys. 78:1311-1324 (1995).

    Google Scholar 

  11. G. Gallavotti, The phase separation line in the two-dimensional Ising model, Comm. Math. Phys. 27:103-136 (1972).

    Google Scholar 

  12. H.-O. Georgii and Y. Higuchi, Percolation and number of phases in the two-dimensional Ising model, J. Math. Phys. 41:1153-1169 (2000).

    Google Scholar 

  13. O. Hryniv, On local behaviour of the phase separation line in the 2D Ising model, Probab. Theory Related Fields 110:91-107 (1998).

    Google Scholar 

  14. M. Campanino, J. T. Chayes, and L. Chayes, Gaussian fluctuations of connectivities in the subcritical regime of percolation, Probab. Theory Related Fields 88:269-341 (1991).

    Google Scholar 

  15. G. R. Grimmett, The stochastic random-cluster process and the uniqueness of randomcluster measures, Ann. Probab. 23:1461-1510 (1995).

    Google Scholar 

  16. J.-D. Deuschel and Á. Pisztora, Surface order large deviations for high-density percolation, Probab. Theory Related Fields 104:467-482 (1996).

    Google Scholar 

  17. H. van Beijeren, Interface sharpness in Ising systems, Comm. Math. Phys. 40:1-6 (1975).

    Google Scholar 

  18. J. Bricmont, J. L. Lebowitz, C. E. Pfister, and E. Olivieri, Non-translation invariant Gibbs states with coexisting phases I, Comm. Math. Phys. 66:1-20 (1979).

    Google Scholar 

  19. J. Bricmont, J. L. Lebowitz, and C. E. Pfister, Nontranslation-invariant Gibbs states with coexisting phases. II. Cluster properties and surface tension, Comm. Math. Phys. 66:21-36 (1979).

    Google Scholar 

  20. N. Datta, A. Messager, and B. Nachtergaele, Rigidity of interfaces in the Falicov-Kimball model, J. Statist. Phys. 99:461-555 (2000).

    Google Scholar 

  21. P. Holický, R. Kotecký, and M. Zahradník, Rigid interfaces for lattice models at low temperatures, J. Statist. Phys. 50:755-812 (1988).

    Google Scholar 

  22. P. Holický and M. Zahradník, Stratified low temperature phases of stratified spin models: a general Pirogov-Sinai approach. Preprint

  23. R. Kotecký, L. Laanait, A. Messager, and J. Ruiz, The q-state Potts model in the standard Pirogov-Sinai theory: surface tensions and Wilson loops, J. Statist. Phys. 58:199-248 (1990).

    Google Scholar 

  24. L. Laanait, A. Messager, S. Miracle-Sole, J. Ruiz, and S. Shlosman, Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation, Comm. Math. Phys. 140:81-91 (1991).

    Google Scholar 

  25. A. Messager, S. Miracle-Sole, J. Ruiz, and S. Shlosman, Interfaces in the Potts model II: Antonov's rule and rigidity of the order disorder interface, Comm. Math. Phys. 140: 275-290 (1991).

    Google Scholar 

  26. H. Kesten, Percolation Theory for Mathematicians (Birkhäuser, Boston, 1982).

    Google Scholar 

  27. J. Černý and R. Kotecký, Interfaces for random cluster models, (2001).

  28. H. Kesten, Aspects of first-passage percolation, in École d'Eté de Probabilités de Saint Flour XIV-1984, P. L. Hennequin, ed., Lecture Notes in Mathematics, Vol. 1180 (Springer, Berlin, 1986), pp. 125-264.

    Google Scholar 

  29. M. Aizenman, J. T. Chayes, L. Chayes, J. Fröhlich, and L. Russo, On a sharp transition from area law to perimeter law in a system of random surfaces, Comm. Math. Phys. 92:19-69 (1983).

    Google Scholar 

  30. G. R. Grimmett and A. E. Holroyd, Entanglement in percolation, Proc. London Math. Soc. 81:485-512 (2000).

    Google Scholar 

  31. R. Cerf and R. Kenyon, The low-temperature expansion of the Wulff crystal in the 3D Ising model, Comm. Math. Phys. 222:147-179 (2001).

    Google Scholar 

  32. K. Kuratowski, Topology, Vol. 2 (Academic Press, New York, London, 1968).

    Google Scholar 

  33. M. F. Sykes and J. W. Essam, Exact critical percolation probabilities for site and bond problems in two dimensions, J. Math. Phys. 5:1117-1127 (1964).

    Google Scholar 

  34. L. Russo, A note on percolation, Z. Wahrscheinlichkeit 43:39-48 (1978).

    Google Scholar 

  35. M. Hall, Combinatorial Theory, 2nd ed. (Wiley, New York, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gielis, G., Grimmett, G. Rigidity of the Interface in Percolation and Random-Cluster Models. Journal of Statistical Physics 109, 1–37 (2002). https://doi.org/10.1023/A:1019950525471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019950525471

Navigation