Skip to main content
Log in

A Remark on Bernstein, Prokhorov, Bennett, Hoeffding, and Talagrand Inequalities

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let X 1,..., Xn be independent random variables such that ℙ{Xj≤ 1}=1 and E X j=0 for all j. We prove an upper bound for the tail probabilities of the sum M n=X1+...+ Xn. Namely, we prove the inequality ℙ{M n≥x}≤ 3.7 ℙ{Sn≥ x}, where S n1+...+ εn is a sum of centered independent identically distributed Bernoulli random variables such that E S 2n =ME M 2n and ℙ{εk=1}=E S 2n /(n+E S 2n ) for all k (we call a random variable Bernoulli if it assumes at most two values). The inequality holds for x∈∝ at which the survival function x↦ℙ{S n≥x} has a jump down. For remaining x, the inequality still holds provided that we interpolate the function between the adjacent jump points linearly or log-linearly. If necessary, in order to estimate ℙ{S n≥x} one can use special bounds for binomial probabilities. Up to the factor at most 2.375, the inequality is final. The inequality improves the classical Bernstein, Prokhorov, Bennett, Hoeffding, Talagrand, and other bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Bentkus, An inequality for large deviation probabilities of sums of bounded i.i.d.r.v., Lith. Math. J., 41(2), 112–119 (2001).

    Google Scholar 

  2. W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc., 58, 13–30 (1963).

    Google Scholar 

  3. M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in: Séminaire de Probabilite´s, XXXIII, Springer, Berlin (1999), pp. 120–216.

    Google Scholar 

  4. C. McDiarmid, On the method of bounded differences, London Math. Soc. Lecture Note Ser., 141, 148–188 (1989).

    Google Scholar 

  5. V. D. Milman and G. Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Math., 1200, (1986).

  6. A. Ostrowski, Sur quelques applications des fonctions convexes et concave au sens de I. Schur, J. Math. Pures Appl., 31, 253–292 (1952).

    Google Scholar 

  7. V. V. Petrov, Sums of Independent Random Variables, Springer, New York (1975).

    Google Scholar 

  8. I. Pinelis, Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities, in: Advances in stochastic inequalities (Atlanta, GA, 1997), Contemp. Math., 234, Amer. Math. Soc., Providence, RI (1999) pp. 149–168.

    Google Scholar 

  9. I. Schur, Ñber eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzber. Berl. Math. Ges., 22, 9–20 (1923).

    Google Scholar 

  10. G. R. Shorack and J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York (1986).

    Google Scholar 

  11. M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Inst. Hautes Études Sci. Publ. Math., 81, 73–205 (1995).

    Google Scholar 

  12. M. Talagrand, The missing factor in Hoeffding's inequalities, Ann. Inst. H. Poincaré Probab. Statist., 31(4), 689–702 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentkus, V. A Remark on Bernstein, Prokhorov, Bennett, Hoeffding, and Talagrand Inequalities. Lithuanian Mathematical Journal 42, 262–269 (2002). https://doi.org/10.1023/A:1020221925664

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020221925664

Navigation