Skip to main content
Log in

Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study polynomial Poisson algebras with some regularity conditions. Linear (Lie–Berezin–Kirillov) structures on dual spaces of semisimple Lie algebras, quadratic Sklyanin elliptic algebras, and the polynomial algebras recently described by Bondal, Dubrovin, and Ugaglia belong to this class. We establish some simple determinant relations between the brackets and Casimir functions of these algebras. In particular, these relations imply that the sum of degrees of the Casimir functions coincides with the dimension of the algebra in the Sklyanin elliptic algebras. We present some interesting examples of these algebras and show that some of them arise naturally in the Hamiltonian integrable systems. A new class of two-body integrable systems admitting an elliptic dependence on both coordinates and momenta is among these examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Feigin and A. Odesskii, Funct. Anal. Appl., 23, 207–214 (1990).

    Google Scholar 

  2. B. Feigin and A. Odesskii, “Vector bundles on an elliptic curve and Sklyanin algebras,” in: Topics in Quantum Groups and Finite-Type Invariants (B. Feigin and V. Vassiliev, eds.) (Amer. Math. Soc. Transl. Ser. 2, Vol. 185), Amer. Math. Soc., Providence, R. I. (1998), pp. 65–84.

    Google Scholar 

  3. I. Vaisman, Lectures on the Geometry of Poisson Manifolds (Progress in Mathematics, Vol. 118), Birkhäuser, Basel (1994).

    Google Scholar 

  4. A. Weinstein, J. Di.erential Geom., 18, 523–557 (1983).

    Google Scholar 

  5. E. K. Sklyanin, Funct. Anal. Appl., 16, 263–270 (1983).

    Google Scholar 

  6. V. Fock, A. Gorsky, N. Nekrasov, and V. Rubtsov, J. High Energy Phys., 0007, 028 (2000).

    Google Scholar 

  7. H. W. Braden, A. Marshakov, A. Mironov, and A. Morozov, Nucl. Phys. B, 573, 553–572 (2000); hep-th/9906240 (1999).

    Google Scholar 

  8. J. T. Stafford and M. Van den Bergh, Bull. Amer. Math. Soc., 38, 171–216 (2001).

    Google Scholar 

  9. H. Kim and C.-Y. Lee, Phys. Lett. B, 536, 154–160 (2002); hep-th/0105265 (2001).

    Google Scholar 

  10. P. Candelas, A. M. Dale, C. A. Lutken, and R. Schimmrigk, Nucl. Phys. B, 298, 493–525 (1988).

    Google Scholar 

  11. P. Candelas, X. de la Ossa, P. S. Green, and L. Parkes, Nucl. Phys. B, 359, 21–74 (1991).

    Google Scholar 

  12. Y. Nambu, Phys. Rev. D, Ser. 3, 7, 2405–2412 (1973).

    Google Scholar 

  13. L. Takhtajan, Comm. Math. Phys., 160, 295–315 (1994).

    Google Scholar 

  14. J. A. de Azcárraga, A. M. Perelomov, and J. C. Pérez Bueno, J. Phys. A, 29, 7993–8009 (1996).

    Google Scholar 

  15. G. Khimshiashvili, Proc. A. Razmadze Math. Inst., 119, 111–120 (1999).

    Google Scholar 

  16. B. Dubrovin, “Differential geometry of the space of orbits of a Coxeter group,” in: Surveys in Differential Geometry: Integrable Systems (C.-L. Terng, ed.), Vol. 4, International Press, Cambridge, Mass. (1998), pp. 181-211.

    Google Scholar 

  17. M. Ugaglia, Internat. Math. Res. Notices, No. 9, 473–493 (1999).

    Google Scholar 

  18. P. Boalch, Invent. Math., 146, 479–506 (2001); math.DG/0011062 (2000).

    Google Scholar 

  19. L. O. Chekhov and V. V. Fock, Czech. J. Phys., 50, 1201–1208 (2000).

    Google Scholar 

  20. J. E. Nelson and T. Regge, Phys. Lett. B, 272, 213–216 (1991); Comm. Math. Phys., 155, 561-568 (1993).

    Google Scholar 

  21. A. Bondal, “A symplectic groupoid of triangular bilinear forms and the braid group,” Preprint M2000/02, Institute des Hautes Etudes Scientique, Paris (2000).

    Google Scholar 

  22. A. Korovnichenko and A. Zhedanov, “Dual algebras with non-linear Poisson brackets,” in: Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (S. Pakuliak and G. von Gehlen, eds.), Kluwer, Dordrecht (2001), pp. 265–272.

    Google Scholar 

  23. S. Mukai, Sugaku Expositions, 1, 139–174 (1988); Sugaku, 39, 216-235 (1987).

    Google Scholar 

  24. E. Cattani, D. Cox, and A. Dickenstein, Compositio Math., 108, 35–76 (1997).

    Google Scholar 

  25. M. Lynker and R. Schimmrigk, Nucl. Phys. B, 484, 562–582 (1997).

    Google Scholar 

  26. P. Vanhaecke, Integrable Systems in the Realm of Algebraic Geometry (Lect. Notes Math., Vol. 1638), Springer, Berlin (1996).

    Google Scholar 

  27. M. Adler and P. van Moerbeke, Comm. Math. Phys., 83, 83–106 (1982).

    Google Scholar 

  28. I. Krichever and A. Zabrodin, Russ. Math. Surveys, 50, 1101–1150 (1995).

    Google Scholar 

  29. H. Braden, A. Gorsky, A. Odesskii, and V. Rubtsov, Nucl. Phys. B, 633, 414–442 (2002); hep-th/-111066 (2001).

    Google Scholar 

  30. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 355, 466–474 (1995).

    Google Scholar 

  31. R. Donagi and E. Witten, Nucl. Phys. B, 460, 299–334 (1996).

    Google Scholar 

  32. D. B. Fairlie, Phys. Lett. A, 119, 438–440 (1987).

    Google Scholar 

  33. R. S. Ward, J. Phys. A, 20, 2679–2683 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odesskii, A.V., Rubtsov, V.N. Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves. Theoretical and Mathematical Physics 133, 1321–1337 (2002). https://doi.org/10.1023/A:1020673412423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020673412423

Navigation