Skip to main content
Log in

On Closability of Directional Gradients

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let μ be a centred Gaussian measure on a separable real Banach space E, and let H be a Hilbert subspace of E. We provide necessary and sufficient conditions for closability in L p(E,μ) of the gradient D H in the direction of H. These conditions are further elaborated in case when the gradient D H corresponds to a bilinear form associated with a certain nonsymmetric Ornstein–Uhlenbeck operator. Some natural examples of closability and nonclosability are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Albeverio, S. and Röckner, M.: 'Classical Dirichlet forms on topological vector spaces — closability and a Cameron—Martin formula', J. Funct. Anal. 88 (1990), 395-435.

    Google Scholar 

  2. Bogachev, V.I.: Gaussian Measures, Math. Surveys Monographs 62, Amer. Math. Soc., 1998.

  3. Brze´zniak, Z. and van Neerven, J.M.A.M.: 'Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem', Studia Math. 143 (2000), 43-74.

    Google Scholar 

  4. Chojnowska-Michalik, A.: 'Representation theorem for general stochastic delay equations', Bull. Polish Acad. Sci. Math. 26 (1978), 634-641.

    Google Scholar 

  5. Chojnowska-Michalik, A. and Goldys, B.: 'Nonsymmetric Ornstein—Uhlenbeck generators', in Ph. Clément, F. den Hollander, J. van Neerven and B. de Pagter (eds), Infinite Dimensional Stochastic Analysis, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 2000, pp. 99—116.

    Google Scholar 

  6. Chojnowska-Michalik, A. and Goldys, B.: 'Symmetric Ornstein—Uhlenbeck generators: Characterizations and identification of domains', in preparation.

  7. Da Prato, G. and Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., Cambridge University Press, Cambridge (UK), 1992.

    Google Scholar 

  8. Da Prato, G. and Zabczyk, J.: 'Evolution equations with white noise boundary conditions', Stochastics Stochastics Rep. 42 (1993), 167—182.

    Google Scholar 

  9. Da Prato, G. and Zabczyk, J.: 'Regular densities of invariant measures in Hilbert spaces', J. Funct. Anal. 130 (1995), 427-449.

    Google Scholar 

  10. Da Prato, G. and Zabczyk, J.: Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge (UK), 1996.

    Google Scholar 

  11. Eberle, A.: Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators, Lecture Notes in Math. 1718, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  12. Frolov, N.N.: 'Embedding theorems for functions of a countable number of variables and their applications to the Dirichlet problem', Soviet Math. Dokl. 13 (1972), 346-349.

  13. Frolov, N.N.: 'Embedding theorems for spaces of functions of a countable number of variables and their applications to the Dirichlet problem', Siberian Math. J. 22 (1981), 638-652.

    Google Scholar 

  14. Fuhrman, M.: 'Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces', Studia Math. 115 (1995), 53-71.

    Google Scholar 

  15. Goldys, B. and Gozzi, F.: 'Second order Hamilton—Jacobi equations in Hilbert spaces and stochastic control: L 2-approach', in preparation.

  16. Goldys, B. and van Neerven, J.M.A.M.: 'Symmetric and nonsymmetric Ornstein—Uhlenbeck semigroups in Banach spaces and their reproducing kernel Hilbert spaces', in preparation.

  17. Ma, Z.M. and Röckner, M.: Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Springer-Verlag, 1992.

  18. Musiela, M.: 'Stochastic PDEs and term structure models', Journées Internationales de Finance, IGR-AFFI, La Baule, 1993.

  19. Peszat, S.: 'Sobolev spaces of functions on an infinite-dimensional domain', in Stochastic Processes and Related Topics (Siegmundsberg, 1994), Stochastics Monogr. 10, Gordon and Breach, Yverdon, 1996, pp. 103-116.

    Google Scholar 

  20. Peszat, S. and Zabczyk, J.: 'Stochastic evolution equations with a spatially homogeneous Wiener process', Stochastic Process. Appl. 72 (1997), 187-204.

    Google Scholar 

  21. Stannat, W.: '(Nonsymmetric) Dirichlet operators on L 1: Existence, uniqueness and associated Markov processes', Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999), 99-140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldys, B., Gozzi, F. & van Neerven, J. On Closability of Directional Gradients. Potential Analysis 18, 289–310 (2003). https://doi.org/10.1023/A:1021832202659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021832202659

Navigation