Skip to main content
Log in

Approximate Invariance and Differential Inclusions in Hilbert Spaces

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

Consider a mapping F from a Hilbert space H to the subsets of H, which is upper semicontinuous/Lipschitz, has nonconvex, noncompact values, and satisfies a linear growth condition. We give the first necessary and sufficient conditions in this general setting for a subset S of H to be approximately weakly/strongly invariant with respect to approximate solutions of the differential inclusion \(\dot x(t) \in F(x)\) The conditions are given in terms of the lower/upper Hamiltonians corresponding to F and involve nonsmooth analysis elements and techniques. The concept of approximate invariance generalizes the well-known concept of invariance and in turn relies on the notion of an ∈-trajectory corresponding to a differential inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Aubin, Viability theory. Birkhäuser, Boston, 1991.

    Google Scholar 

  2. J.-P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag, New York, 1984.

    Google Scholar 

  3. J.-M. Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier Grenoble 19 (1969), 277–304.

    Google Scholar 

  4. J. M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Am. Math. Soc. 303 (1987), 517–527.

    Google Scholar 

  5. J. M. Borwein and H. M. Strojwas, Proximal analysis and boundaries of closed sets in Banach space. Part I: Theory. Can. J. Math. 38 (1986), 431–452.

    Google Scholar 

  6. O. Cârja and I. I. Vrabie, Some new viability results for semilinear differential inclusions. Preprint, 1996.

  7. F. H. Clarke, Generalized gradients and applications. Trans. Am. Math. Soc. 205 (1975), 247–262.

    Google Scholar 

  8. _____, Methods of dynamic and nonsmooth optimization. In: CBMSNSF Regional Conference series in Applied Mathematics, Vol. 57. SIAM, Philadelphia, 1989.

    Google Scholar 

  9. _____, Optimization and nonsmooth analysis. In: Classics in Applied Mathematics, Vol. 5. SIAM, Philadelphia, 1990. (Originally published by Wiley Interscience, New York, 1983).

    Google Scholar 

  10. F. H. Clarke and J.-P. Aubin, Monotone invariant solutions to differential inclusions. J. London Math. Soc. 16 (1977), 357–366.

    Google Scholar 

  11. F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Introduction to nonsmooth analysis, (textbook in preparation).

  12. _____, Qualitative properties of trajectories of control systems: A survey. J. Dynam. and Control Syst. 1 (1995), 1–48.

  13. F. H. Clarke, Yu. S. Ledyaev, and P. R. Wolenski. Proximal analysis and minimization principles. J. Math. Anal. Appl. 196 (1995), 722–735.

    Google Scholar 

  14. M. G. Crandall, A generalization of Peano's existence theorem and flow invariance. Proc. Am. Math. Soc. 36 (1972), 151–155.

    Google Scholar 

  15. M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc. 277 (1983), 1–42.

    Google Scholar 

  16. K. Deimling, Ordinary differential equations in Banach spaces. Lect. Notes Math. 596 (1977).

  17. _____, Multivalued differential equations, de Gruyter, Berlin, 1992.

    Google Scholar 

  18. J. Diestel and J. J. Uhl, Vector measures. Am. Math. Soc., Providence, 1977.

    Google Scholar 

  19. H. Frankowska, Lower semicontinuous solutions of the Hamilton-Jacobi equation. SIAM J. Control Optimiz. 31 (1993), 257–272.

    Google Scholar 

  20. Kh. Guseinov, A. I. Subbotin, and V. N. Ushakov, Derivatives for multivalued mappings with applications to game-theoretical problems of control. Probl. Control. Inf. Theory 14 (1985), 155–167.

    Google Scholar 

  21. Kh. Guseinov and V. N. Ushakov, Strongly and weakly invariant sets with respect to differential inclusions. (Russian) Differ. Uravneniya 26 (1990), 1888–1894.

    Google Scholar 

  22. N. N. Krasovskii and A. I. Subbotin, Positional differential games. (Russian) Nauka, Moscow, 1974. (Revised English translation: Game-theoretical control problems, Springer-Verlag, New York, 1988).

    Google Scholar 

  23. M. Krastanov, Ordinary forward invariant sets, homogeneity and smalltime local controllability. In: Banach Center Publications, Vol. 32. Polish Academy of Sciences, 1995.

  24. P. D. Loewen, Optimal control via nonsmooth analysis. Vol. 2. CRM Proc. and Lect. Notes, Providence, Am. Math. Soc., 1993.

    Google Scholar 

  25. N. H. Pavel, Differential equations, flow invariance and applications. Vol. 113. Research Notes in Math., Pitman, 1984.

  26. R. H. Jr. Martin, Nonlinear operators and differential equations in Banach spaces. Wiley, New York, 1976.

    Google Scholar 

  27. M. L. Radulescu and F. H. Clarke, Geometric approximation of proximal normals, (submitted).

  28. R. Redheffer and W. Walter, A differential inequality for the distance function in normed linear spaces. Math. Ann. 211 (1974), 299–314.

    Google Scholar 

  29. Shuzhong Shi, Viability theorems of a class of differential-operator inclusions. J. Differ. Eqs. 79 (1989), 232–257.

    Google Scholar 

  30. A. I. Subbotin, A generalization of the basic equation of the theory of differential games. Sov. Math. Dokl. 22 (1980), 358–362.

    Google Scholar 

  31. _____, Generalized solutions of first-order PDEs: The dynamical optimization perspective. Birkhäuser, Boston, 1995.

    Google Scholar 

  32. V. M. Veliov, Sufficient conditions for viability under imperfect measurement. Set-Valued Anal. 1 (1993), 305–317.

    Google Scholar 

  33. J. A. Yorke, A continuous differential equation in Hilbert space without existence. Funkc. Ekvac. 13 (1970), 19–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, F.H., Ledyaev, Y.S. & Radulescu, M.L. Approximate Invariance and Differential Inclusions in Hilbert Spaces. Journal of Dynamical and Control Systems 3, 493–518 (1997). https://doi.org/10.1023/A:1021873607769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021873607769

Navigation