Skip to main content
Log in

On the LIL for Self-Normalized Sums of IID Random Variables

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let \(X,X_i ,i \in \mathbb{N},\) be i.i.d. random variables and let, for each \(n \in \mathbb{N},S_n = \sum\nolimits_{i = 1}^n {X_i }\) and \(V_n^2 = \sum\nolimits_{i = 1}^n {X_i^2 }\). It is shown that \(\lim \sup _{n \to \infty } {{|S_n |} \mathord{\left/ {\vphantom {{|S_n |} {(V_n \sqrt {\log \log n} ) < \infty }}} \right. \kern-\nulldelimiterspace} {(V_n \sqrt {\log \log n} ) < \infty }}\) a.s. whenever the sequence of self-normalized sums S n /V n is stochastically bounded, and that this limsup is a.s. positive if, in addition, X is in the Feller class. It is also shown that, for X in the Feller class, the sequence of self-normalized sums is stochastically bounded if and only if \(\lim \sup _{t \to \infty } {{[t|\mathbb{E}XI(|X| \leqslant t)|} \mathord{\left/ {\vphantom {{[t|\mathbb{E}XI(|X| \leqslant t)|} {\mathbb{E}X^2 I(|X| \leqslant t)] < \infty }}} \right. \kern-\nulldelimiterspace} {\mathbb{E}X^2 I(|X| \leqslant t)] < \infty }}\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Araujo, A., and Giné, E. (1980). The Central Limit Theorem for Real and Banach Valued Random Variables. John Wiley, New York.

    Google Scholar 

  2. Billingsley, P. (1968). Convergence of Probability Measures. John Wiley, New York.

    Google Scholar 

  3. Csörgő, S., Haeusler, E., and Mason, D. M. (1988). A probabilistic approach to the asymptotic distribution of sums of independent, identically distributed random variables. Adv. Appl. Math. 9, 259–333.

    Google Scholar 

  4. Einmahl, U., and Mason, D. M. (1994). A universal Chung-type law of the iterated logarithm. Ann. Prob. 22, 1803–1825.

    Google Scholar 

  5. Feller, W. (1967). On regular variation and local limit theorems. In Proc. Fifth Berkeley Symp., Vol. 2, Part 1, pp. 373–388.

    Google Scholar 

  6. Giné, E., Götze, F., and Mason, D. M. (1997). When is the student t-statistic asymptotically standard normal? Ann. Prob. 25, 1514–1531.

    Google Scholar 

  7. Griffin, P. S., Jain, N., and Pruitt, W. (1984). Approximate local limit theorems for laws outside domains of attractions. Ann. Prob. 12, 45–63.

    Google Scholar 

  8. Griffin, P. S., and Kuelbs, J. (1989). Self-normalized laws of the iterated logarithm. Ann. Prob. 17, 1571–1601.

    Google Scholar 

  9. Griffin, P. S., and Kuelbs, J., (1991). Some extensions of the LIL via self-normalization. Ann. Prob. 19, 380–395.

    Google Scholar 

  10. Griffin, P. S., and Mason, D. M. (1991). On the asymptotic normality of self-normalized sums. Proc. Cambridge Phil. Soc. 109, 597–610.

    Google Scholar 

  11. Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 13–30.

    Google Scholar 

  12. Jain, N., and Orey, S. (1980). Domains of partial attraction and tightness conditions. Ann. Prob. 8, 584–599.

    Google Scholar 

  13. Maller, R. A. (1979). Relative stability, characteristic functions and stochastic compactness. J. Austral. Math. Soc. (Series A) 28, 499–509.

    Google Scholar 

  14. Pruitt, W. (1983). The class of limit laws for stochastically compact normed sums. Ann. Prob. 11, 962–969.

    Google Scholar 

  15. Pruitt, W. (1987). The contribution to the sum of the summand of maximum modulus. Ann. Prob. 15, 885–896.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giné, E., Mason, D.M. On the LIL for Self-Normalized Sums of IID Random Variables. Journal of Theoretical Probability 11, 351–370 (1998). https://doi.org/10.1023/A:1022675620729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022675620729

Navigation