Skip to main content
Log in

New Examples of Willmore Surfaces in S n

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A surface x: MS n is called a Willmore surface if it is a criticalsurface of the Willmore functional ∫ M (S − 2H 2)dv, where H isthe mean curvature and S is the square of the length of the secondfundamental form. It is well known that any minimal surface is aWillmore surface. The first nonminimal example of a flat Willmoresurface in higher codimension was obtained by Ejiri. This example whichcan be viewed as a tensor product immersion of S 1(1) and a particularsmall circle in S 2(1), and therefore is contained in S 5(1) gives anegative answer to a question by Weiner. In this paper we generalize theabove mentioned example by investigating Willmore surfaces in S n(1)which can be obtained as a tensor product immersion of two curves. We inparticular show that in this case too, one of the curves has to beS 1(1), whereas the other one is contained either in S 2(1) or in S 3(1). In the first case, we explicitly determine the immersion interms of elliptic functions, thus constructing infinetely many newnonminimal flat Willmore surfaces in S 5. Also in the latter casewe explicitly include examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryant, R.: A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984), 2–53.

    Google Scholar 

  2. Byrd, P. F. and Friedman, M. D.: Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin, 1953.

    Google Scholar 

  3. Castro, I. and Urbano, F.: Willmore surfaces of R 4 and the Whitney sphere, Ann. Global Anal. Geom. 19 (2001), 15–175.

    Google Scholar 

  4. Chen, B. Y.: Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital. 10 (1974), 38–385.

    Google Scholar 

  5. Chen, B. Y.: Geometry of Submanifolds, Marcel Dekker, New York, 1973.

    Google Scholar 

  6. Chen, B. Y.: Differential geometry of tensor product immersions, Ann. Global Anal. Geom. 11 (1993), 34–359.

    Google Scholar 

  7. Chen, B. Y.: Differential geometry of tensor product immersions II, Ann. Global Anal. Geom. 12 (1994), 8–96.

    Google Scholar 

  8. Chen, B. Y.: Classification of tensor product immersions which are of 1-type, Glasgow Math. J. 36 (1994), 25–264.

    Google Scholar 

  9. Decruyenaere, F., Dillen, F., Verstraelen, L. and Vrancken, L.: The semiring of immersions of manifolds, Beiträge Algebra Geom. 5 (1994), 20–215.

    Google Scholar 

  10. Ejiri, N.: A counter example for Weiner’s open question, Indiana Univ. Math. J. 31 (1982), 20–211.

    Google Scholar 

  11. Guo, Z., Li, H. and Wang, C. P.: The second variation formula for Willmore submanifolds in S n, Results in Math. 40 (2001), 20–225.

    Google Scholar 

  12. Hertrich-Jeromin, U. and Pinkall, U.: Ein Beweis der Willmoreschen Vermutung für Kanaltori, J. reine angew. Math. 430 (1992), 2–34.

    Google Scholar 

  13. Langer, J. and Singer, D.: Curves in the hyperbolic plane and the mean curvatures of tori in 3-space, Bull. London Math. Soc., 16 (1984), 53–534.

    Google Scholar 

  14. Langer, J. and Singer, D.: The total squared curvature of closed curves, J. Differential Geom. 20 (1984), –22.

    Google Scholar 

  15. Li, H.: Willmore hypersurfaces in a sphere, Asian Journal of Math. 5 (2001), 36–378.

    Google Scholar 

  16. Li, H.: Willmore surfaces in S n, Ann. Global Anal. Geom. 21 (2002), 20–213.

    Google Scholar 

  17. Li, P. and Yau, S. T.: A new conformal invariant and its applications to theWillmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), 26–291.

    Google Scholar 

  18. Montiel, S.: Willmore two-spheres in the four-sphere, Trans. Amer. Math. Soc. 352 (2000), 446–4486.

    Google Scholar 

  19. Montiel, S. and Ros, A.: Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent. Math. 83(1) (1986), 15–166.

    Google Scholar 

  20. Pinkall, U.: Hopf tori in S 3, Invent. Math. 81 (1985), 37–386.

    Google Scholar 

  21. Ros, A.: The Willmore conjecture in the real projective space, Math. Res. Lett. 6 (1999), 48–493.

    Google Scholar 

  22. Thomsen, G.: Ñber konforme Geometrie, I: Grundlagen der konformen Flachentheorie, Abh. Math. Sem. Univ. Hamburg 3 (1923), 3–56.

    Google Scholar 

  23. Weiner, J.: On a problem of Chen, Willmore, etc., Indiana Univ. Math. J. 27 (1978), 1–35.

    Google Scholar 

  24. White, J. H.: A global invariant of conformal mappings in space, Proc. Amer. Math. Soc. 38 (1973), 16–164.

    Google Scholar 

  25. Willmore, T. J.: Note on embedded surfaces, Ann. Stiint. Univ. Al. I. Cuza, Iasi, Sect. I. a Mat. (N.S.) 11B (1965), 49–496.

    Google Scholar 

  26. Willmore, T. J.: Surfaces in conformal geometry, Ann. Global Anal. Geom. 18 (2000), 25–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Vrancken, L. New Examples of Willmore Surfaces in S n . Annals of Global Analysis and Geometry 23, 205–225 (2003). https://doi.org/10.1023/A:1022825513863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022825513863

Navigation