Skip to main content
Log in

Ising Quantum Chain and Sequence Evolution

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A sequence space model which describes the interplay of mutation and selection in molecular evolution is shown to be equivalent to an Ising quantum chain. Observable quantities tailored to match the biological situation are then employed to treat three fitness landscapes exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, 9th printing (Dover, New York, 1970).

    Google Scholar 

  2. E. Baake, Diploid models on sequence space, J. Biol. Syst. 3:343 (1995).

    Google Scholar 

  3. M. Baake, P. Chaselon, and M. Schlottmann, The Ising quantum chain with defects (II), Nucl. Phys. B 314:625 (1995).

    Google Scholar 

  4. N. H. Barton and M. Turelli, Natural and sexual selection on many loci, Genetics 127:229 (1991).

    Google Scholar 

  5. E. Baake, M. Baake, and H. Wagner, The Ising quantum chain is equivalent to a model of biological evolution, Phys. Rev. Lett. 78:559 (1997).

    Google Scholar 

  6. E. Baake, M. Baake, and H. Wagner, Quantum mechanics versus classical probability in biological evolution, Phys. Rev. E 57:1191 (1998).

    Google Scholar 

  7. N. H. Barton, The maintenance of polygenic variation through a balance between mutation and stabilizing selection, Genet. Res. Camb. 47:209 (1986).

    Google Scholar 

  8. E. Baake and T. Wiehe, Bifurcations in haploid and diploid sequence space models, J. Math. Biol. 35:321 (1997).

    Google Scholar 

  9. H. Bauer, Probability Theory (de Gruyter, Berlin, 1996).

    Google Scholar 

  10. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 1, 2nd edition (Springer, New York, 1987).

    Google Scholar 

  11. O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 2, 2nd edition (Springer, New York, 1996).

    Google Scholar 

  12. R. Bürger, On the maintenance of genetic variation: Global analysis of Kimura's continuum-of-alleles model, J. Math. Biol. 24:34 (1986).

    Google Scholar 

  13. J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory (Harper & Row, New York, 1970).

    Google Scholar 

  14. M. Eigen, J. S. McCaskill, and P. Schuster, The molecular quasi-species, Adv. Chem. Phys. 75:149 (1989).

    Google Scholar 

  15. W. J. Ewens, Mathematical Population Genetics (Springer, New York, 1979).

    Google Scholar 

  16. M. Fannes, H. Spohn, and A. Verbeure, Equilibrium states for mean field models, J. Math. Phys. 21:355 (1980).

    Google Scholar 

  17. H. Frahm, Integrable spin-\(\frac{1}{2}\) XXZ Heisenberg chain with competing interactions, J. Phys. A 25:1417 (1992).

    Google Scholar 

  18. S. Franz, L. Peliti, and M. Sellitto, An evolutionary version of the random energy model, J. Phys. A 26:L1195 (1993).

    Google Scholar 

  19. S. Galluccio, R. Graber, and Y.-C. Zhang, Diffusion on a hypercubic lattice with pinning potential: exact results for the error-catastrophe problem in biological evolution, J. Phys. A 29:L249 (1996).

    Google Scholar 

  20. T. Gerisch, Internal symmetries and limiting Gibbs states in quantum lattice mean field theories, Physica A 197:284 (1993).

    Google Scholar 

  21. T. Gerisch and A. Rieckers, The quantum statistical free energy minimum principle for multi-lattice mean field theories, Z. Naturforsch. 45a:931 (1990).

    Google Scholar 

  22. T. Gerisch, A. Rieckers, and H. J. Volkert, Thermodynamic formalism and phase transitions of generalized mean-field quantum lattice models, Z. Naturforsch. 53a:179 (1998).

    Google Scholar 

  23. J. Gillespie, The Causes of Molecular Evolution (Oxford University Press, New York, 1991).

    Google Scholar 

  24. S. Guiasu and A. Shenizer, The principle of maximum entropy, Math. Intelligencer 7:42 (1985).

    Google Scholar 

  25. E. R. Hansen, A Table of Series and Integrals (Prentice-Hall, Englewood-Cliffs, 1975).

    Google Scholar 

  26. J. Hofbauer, The selection mutation equation, J. Math. Biol. 23:41 (1985).

    Google Scholar 

  27. S. A. Kauffman, The Origin of Order (Oxford University Press, New York, 1993).

    Google Scholar 

  28. S. A. Kauffman and S. Johnson, Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches, J. Theor. Biol. 149:467 (1991).

    Google Scholar 

  29. S. Lang, Algebra, 3rd edition (Addison-Wesley, Reading, Massachusetts, 1993).

    Google Scholar 

  30. I. Leuthäusser, An exact correspondence between Eigen's evolution model and a two-dimensional Ising system, J. Chem. Phys. 84:1884 (1984).

    Google Scholar 

  31. I. Leuthäusser, Physikalische und biologische Modelle der Selbstorganisation (Dissertation, Universität Braunschweig. 1987).

  32. I. Leuthäusser, Statistical mechanics of Eigen's evolution model, J. Stat. Phys. 48:343 (1987).

    Google Scholar 

  33. E. H. Lieb, T. D. Schultz, and D. C. Mattis, Two soluble models of an antiferromagnetic chain, Ann. Phys. 16:407 (1961).

    Google Scholar 

  34. E. W. Montroll, R. B. Potts, and J. C. Ward, Correlations and spontaneous magnetization of the two-dimensional Ising-model, J. Math. Phys. 4:308 (1963).

    Google Scholar 

  35. P. Pfeuty, The one-dimensional Ising-model with a transverse field, Ann. Phys. 57:79 (1970).

    Google Scholar 

  36. R. B. Potts and J. C. Ward, The combinatorial method and the two-dimensional Ising-model, Progr. Theoret. Phys. 13:38 (1955).

    Google Scholar 

  37. M. Reed and B. Simon, Functional Analysis, Vol. 1, 2nd edition (Academic Press, San Diego, 1980).

    Google Scholar 

  38. G. R. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helvet. Phys. Acta 62:980 (1989).

    Google Scholar 

  39. D. S. Rumschitzky, Spectral properties of eigen evolution matrices, J. Math. Biol. 24:667 (1987).

    Google Scholar 

  40. T. D. Schultz, D. C. Mattis, and E. H. Lieb, Two-dimensional Ising model as a soluble problem of many fermions, Rev. Mod. Phys. 36:856 (1964).

    Google Scholar 

  41. E. Størmer, Large groups of automorphisms of C*-algebras, Commun. Math. Phys. 5:1 (1967).

    Google Scholar 

  42. E. Størmer, Symmetric states on infinite tensor products on C*-algebras, J. Funct. Anal. 3:48 (1969).

    Article  Google Scholar 

  43. D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis, Phylogenetic inference, in Molecular Systematics, D. M. Hillis, C. Moritz, and B. K. Mable, eds. (Sinauer, Sunderland, 1995).

    Google Scholar 

  44. P. Tarazona, Error threshold for molecular quasispecies as phase transition: From simple landscapes to spin glass models, Phys. Rev. A 45:6038 (1992).

    Google Scholar 

  45. C. J. Thompson, Mathematical Statistical Mechanics (Macmillan, New York, 1972).

    Google Scholar 

  46. C. J. Thompson and J. L. McBride, On Eigen's theory of the self-organization of matter and the evolution of biological macromolecules, Math. Biosci. 21:127 (1974).

    Google Scholar 

  47. W. Walter, Gewöhnliche Differentialgleichungen, 5th ed. (Springer, Berlin, 1993).

    Google Scholar 

  48. T. Wiehe, E. Baake, and P. Schuster, Error propagation in reproduction of diploid organisms, J. Theor. Biol. 177:1 (1995).

    Google Scholar 

  49. G. Woodcock and P. Higgs, Population evolution on a single-peaked landscape, J. Theor. Biol. 179:61 (1996).

    Google Scholar 

  50. C. N. Yang, The spontaneous magnetization of a two-dimensional Ising-model, Phys. Rev. 83:808 (1952).

    Google Scholar 

  51. Y.-C. Zhang, Quasispecies evolution of finite populations, Phys. Rev. A 55:R3187 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, H., Baake, E. & Gerisch, T. Ising Quantum Chain and Sequence Evolution. Journal of Statistical Physics 92, 1017–1052 (1998). https://doi.org/10.1023/A:1023048711599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023048711599

Navigation