Skip to main content
Log in

Chaotic Eigenfunctions in Phase Space

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study individual eigenstates of quantized area-preserving maps on the 2-torus which are classically chaotic. In order to analyze their semiclassical behavior, we use the Bargmann–Husimi representations for quantum states as well as their stellar parametrization, which encodes states through a minimal set of points in phase space (the constellation of zeros of the Husimi density). We rigorously prove that a semiclassical uniform distribution of Husimi densities on the torus entails a similar equidistribution for the corresponding constellations. We deduce from this property a universal behavior for the phase patterns of chaotic Bargmann eigenfunctions which is reminiscent of the WKB approximation for eigenstates of integrable systems (though in a weaker sense). In order to obtain more precise information on “chaotic eigenconstellations,” we then model their properties by ensembles of random states, generalizing former results on the 2-sphere to the torus geometry. This approach yields statistical predictions for the constellations which fit quite well the chaotic data. We finally observe that specific dynamical information, e.g., the presence of high peaks (like scars) in Husimi densities, can be recovered from the knowledge of a few long-wavelength Fourier coefficients, which therefore appear as valuable order parameters at the level of individual chaotic eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University Press, Cambridge, UK, 1965).

    Google Scholar 

  2. A. Erdélyi (ed), Higher transcendental functions (Bateman Manuscript Project, McGraw-Hill, 1953).

  3. R. P. Boars, Jr., Entire Functions (Academic Press, New York, 1954).

    Google Scholar 

  4. M. Nakahara, Geometry, Topology and Physics (Institute of Physics Publishing, Bristol, 1992).

    Google Scholar 

  5. S. Klimek and A. Lesniewski, Quantum Riemann surfaces II: the discrete series, Lett. Math. Phys. 24:125–139 (1992).

    Google Scholar 

  6. S. Nonnenmacher, États propres de systèmes classiquement chaotiques dans l'espace des phases, Thèse de l'Université Paris XI, Orsay, France, 1998 (unpublished).

  7. M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros, Quantum maps, Ann. Phys. N.Y. 122:26–63 (1979).

    Google Scholar 

  8. M. Tabor, A semiclassical quantization of area-preserving maps, Physica D 6:195–210 (1983).

    Google Scholar 

  9. S. Zelditch, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier (Grenoble) 47:305–363 (1997).

    Google Scholar 

  10. A. Schnirelman, Ergodic properties of eigenfunctions, Usp. Math. Nauk. 29:181–182 (1974).

    Google Scholar 

  11. A. Bouzouina and S. De Bièvre, Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Commun. Math. Phys. 178:83–105 (1996); S. Klimek, A. Leśniewski, N. Maitra, and R. Rubin, Ergodic properties of quantized toral automorphisms, J. Math. Phys. 38:67–83 (1997).

    Google Scholar 

  12. M. Degli Esposti, S. Graffi, and S. Isola, Classical limit of the quantized hyperbolic toral automorphisms, Commun. Math. Phys. 167:471–507 (1995).

    Google Scholar 

  13. S. De Bièvre and M. Degli Esposti, Egorov Theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps, Ann. Inst. Henri Poincaré 69, vol. 1, 1–130 (1998).

    Google Scholar 

  14. F. Faure, Approche géométrique de la limite semi-classique par les états cohérents et mécanique quantique sur le tore, Thèse de l'Université Joseph Fourier, Grenoble, France, 1993 (unpublished).

  15. A. Bouzouina, Comportement semi-classique de symplectomorphismes du tore quantifiés, Thèse de l'Université París IX, Paris, France, 1997 (unpublished).

  16. T. Prosen, Quantum surface of section method: eigenstates and unitary quantum Poincaré evolution, Physica D 91:244–277 (1996).

    Google Scholar 

  17. A. Wehrl, On the relation between classical and quantum entropy, Rep. Math. Phys. 16:353–358 (1979).

    Google Scholar 

  18. E. Lieb, Proof of an entropy conjecture of Wehrl, Commun. Math. Phys. 62:35–41 (1978); C.-T. Lee, Wehrl's entropy of spin states and Lieb's conjecture, J. Phys. A 21:3749–3761 (1988).

    Google Scholar 

  19. W. Slomezyński and K. Zyczkowski, Mean dynamical entropy of quantum maps on the sphere diverges in the semiclassical limit, Phys. Rev. Lett. 80:1880–1883 (1998).

    Google Scholar 

  20. P. Leboeuf and A. Voros, Chaos-revealing multiplicative representation of quantum eigenstates, J. Phys. A 23:1765–1774 (1990) and Quantum Nodal Points as Fingerprints of Classical Chaos, in Quantum Chaos: Between order and disorder, G. Casati and B. V. Chirikov, eds. (Cambridge University Press, UK, 1995), pp. 507–533.

    Google Scholar 

  21. A. Voros, Thèse d'Etat (ch. V), Université Paris-Sud, Orsay, France, 1977 (unpublished); A. Voros, Wentzel-Kramers-Brillouin method in the Bargmann representation, Phys. Rev. A 40:6814–6825 (1989).

  22. P. Leboeuf, Phase space approach to quantum dynamics. J. Phys. A 24:4575–4586 (1991).

    Google Scholar 

  23. P. Leboeuf and P. Shukla, Universal fluctuations of zeros of chaotic wavefunctions, J. Phys. A 29:4827–4835 (1996).

    Google Scholar 

  24. P. Shukla, On the distribution of zeros of chaotic wavefunctions, J. Phys. A 30:6313–6326 (1997).

    Google Scholar 

  25. B. Schiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, preprint, Dept. of Mathematics, Johns Hopkins University, Baltimore, MD (1998).

    Google Scholar 

  26. E. Bogomolny, O. Bohigas, and P. Leboeuf, Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85:639–679 (1996).

    Google Scholar 

  27. J. H. Hannay, Chaotic analytic zero points: exact statistics for those of a random spin state, J. Phys. A 29:L101-L105 (1996).

    Google Scholar 

  28. T. Prosen, Exact statistics of complex zeros for Gaussian random polynomials with real coefficients, J. Phys. A 29:4417–4423 (1996).

    Google Scholar 

  29. A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. 32:1–37 (1995).

    Google Scholar 

  30. G. A. Mezincescu, D. Bessis, J.-D. Fournier, G. Mantica, and F. D. Aaron, Distribution of roots of random real generalized polynomials, J. Stat. Phys. 86:675–705 (1996).

    Google Scholar 

  31. P. Bleher and X. Di, Correlations between zeros of a random polynomial, J. Stat. Phys. 88:269–305 (1997).

    Google Scholar 

  32. O. Bohigas, Random matrix theories and chaotic dynamics, in Les Houches, session LII, M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds. (North-Holland, 1991).

  33. G. Le Caër and J. S. Ho, The Voronoi tessellation generated from eigenvalues of complex random matrices, J. Math. Phys. A 23:3279–3295 (1990).

    Google Scholar 

  34. H. Iwaniec and P. Sarnak, L norms of eigenfunctions of arithmetic surfaces, Ann. Math. 141:301–320 (1995).

    Google Scholar 

  35. E. Bogomolny, Semiclassical quantization of multidimensional systems, Nonlinearity 5:805–866 (1992).

    Google Scholar 

  36. T. Prosen, General quantum surface-of-section method, J. Phys. A 28:4133–4155 (1995).

    Google Scholar 

  37. M. V. Berry, Semiclassical theory of spectral rigidity, Proc. R. Soc. A 400:229–251 (1985), and Some quantum-to-classical asymptoties, in Les Houches, session LII, M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds. (North-Holland, 1991).

    Google Scholar 

  38. J. H. Hannay and M. V. Berry, Quantisation of linear maps on a torus—Fresnel diffraction by a periodic grating, Physica D 1:267–291 (1980).

    Google Scholar 

  39. N. L. Balazs and A. Voros, The quantized baker's transformation, Ann. Phys. 190:1–31 (1989).

    Google Scholar 

  40. M. Saraceno and A. Voros, Towards a semiclassical theory of the quantum baker's map, Physica D 79:206–268 (1994).

    Google Scholar 

  41. P. W. O'Connor, S. Tomsovic, and E. J. Heller, Accuracy of semiclassical dynamics in the presence of chaos, J. Stat. Phys. 68:131–152 (1992).

    Google Scholar 

  42. S. Nonnenmacher, Crystal properties of eigenstates for quantum cat maps, Nonlinearity 107:1569–1598 (1997).

    Google Scholar 

  43. O. Agam and S. Fishman, Semiclassical criterion for sears in wave functions of chaotic systems, Phys. Rev. Lett. 73:806–809 (1994).

    Google Scholar 

  44. W. Rudin, Real and complex analysis (Mc Graw-Hill, 1970).

  45. M. Reed and B. Simon, Methods of modern mathematical physics, I: Functional Analysis (Academic Press, 1972).

  46. W. K. Hayman and P. B. Kennedy, Subharmonic Functions (Academic Press, 1976).

  47. P. Lelong and L. Gruman, Entire functions of several complex variables (Springer, 1986).

  48. J. L. Doob, Classical potential theory and its probabilistic counterpart (Springer, 1984).

  49. E. B. Saff and A. B. J. Kuijlaars, Distributing many points on a sphere, The Mathematical Intelligencer 19(1):5–11 (1997).

    Google Scholar 

  50. B. Osgood, R. Phillips, and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80:148–211 (1988).

    Google Scholar 

  51. M. Kierlanczyk, Determinants of Laplacians (PhD thesis, MIT, 1986).

  52. T. Miyake, Modular forms (Springer, 1980).

  53. H. Cohn, Advanced number theory (Dover, 1980).

  54. V. Kač and D. H. Peterson, Infinite dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53:125–264 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonnenmacher, S., Voros, A. Chaotic Eigenfunctions in Phase Space. Journal of Statistical Physics 92, 431–518 (1998). https://doi.org/10.1023/A:1023080303171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023080303171

Navigation