Skip to main content
Log in

Normalizable, Integrable, and Linearizable Saddle Points for Complex Quadratic Systems in \(\mathbb{C}^2 \)

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider complex differential systems in the neighborhood of a singular point with eigenvalues in the ratio 1 : −λ with λ ∈ \(\mathbb{R}^{ + *} \). We address the questions of orbital normalizability, normalizability (i.e., convergence of the normalizing transformation), integrability (i.e., orbital linearizability), and linearizability of the system. As for the experimental part of our study, we specialize to quadratic systems and study the values of λ for which these notions are distinct. For this purpose we give several tools for demonstrating normalizability, integrability, and linearizability.

Our main interest is the global organization of the strata of those systems for which the normalizing transformations converge, or for which we have integrable or linearizable saddles as λ and the other parameters of the system vary. Many of the results are valid in the larger context of polynomial or analytic vector fields. We explain several features of the bifurcation diagram, namely, the existence of a continuous skeleton of integrable (linearizable) systems with sequences of holes filled with orbitally normalizable (normalizable) systems and strata finishing at a particular value of λ. In particular, we introduce the Ecalle-Voronin invariants of analytic classifcation of a saddle point or the Martinet-Ramis invariants for a saddle-node and illustrate their role as organizing centers of the bifurcation diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Brjuno, Analytic form of differential equations. Trans. Moscow Math. Soc. 25 (1971), 131-288.

    Google Scholar 

  2. C. Christopher, Invariant algebraic curves and conditions for a center. Proc. Roy. Soc. Edinburgh 124A (1994), 1209-1229.

    Google Scholar 

  3. D. Cerveau and J.-F. Mattei, Formes intégrables holomorphes singulières. Astérisque 97 (1982), 193 pp.

    Google Scholar 

  4. C. Christopher and C. Rousseau, Non degenerate linearisable centres of complex planar quadratic and symmetric cubic systems in C 2. Publ. Math. 45 (2001) 95-123.

    Google Scholar 

  5. C. Christopher and C. Rousseau, Normalizable, integrable and linearizable saddle points in the Lotka-Volterra system. Preprint Centre de Recherches Mathématiques (2002).

  6. G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré. (Mélanges) Bull. Sci. Math. (1878), 60–96, 123–144, 151–200.

  7. H. Dulac, Sur les cycles limites. Bull. Soc. Math. France 51 (1923) 45-188.

    Google Scholar 

  8. J. Ecalle, Les fonctions résurgentes. Publ. Math (1985).

  9. J.-P. Françoise, Singularités de champs à plans invariants. C. R. Acad. Sci. Paris, Sér. A 290 (1980), 275-277.

    Google Scholar 

  10. A. Fronville, A. Sadovski, and H. Zoładek, Solution of the 1:-2 resonant center problem in the quadratic case. Fund. Math. 157 (1998), 191-207.

    Google Scholar 

  11. S. Gravel and P. Thibault, Integrability and linearizability of the Lotka-Volterra system with a saddle point with rational hyperbolicity ratio. J. Differential Equations 184 (2002).

  12. Yu. S. Ilyashenko, Divergence of series reducing an analytic differential equation to linear normal form at a singular point. Funct. Anal. Appl. 13 (1979) 227-229.

    Google Scholar 

  13. Yu. S. Ilyashenko and A. S. Pyartli, Materialization of Poincaré resonances and divergence of normalizing series. J. Sov. Math. (1985) 3053-3092.

  14. Yu. S. Ilyashenko and A. S. Pyartli, Materialization of resonances and divergence of normalizing series for polynomial differential equations, J. Sov. Math. 32 (1986) 300-313.

    Google Scholar 

  15. Yu. Ilyashenko and S. Yakovenko, Stokes phenomena in smooth classification problems. Nonlinear Stokes phenomena. (Yu. Ilyashenko, Ed.) Adv. Sov. Math. 14 (1993).

  16. V. Kostov, Versal deformations of differential forms of degree α on the line. Funct. Anal. Appl. 18 (1984) 335-337.

    Google Scholar 

  17. J.-F. Mattei and R. Moussu, Holonomie et intégrales premières. Ann. Sci. école Norm. Sup. (4). 13, (1980) 469-523.

    Google Scholar 

  18. J. Martinet and J.-P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Publ. IHES 55 (1982), 63-164.

    Google Scholar 

  19. J. Martinet and J.-P. Ramis, Classification analytique des équations non linéaires résonnantes du premier ordre. Ann. Sci. école Norm. Sup. (4). 16 (1983), 571-621.

    Google Scholar 

  20. P. Mardešić, L. Moser-Jauslin, and C. Rousseau, Isochronous centers and Darboux linearisation. J. Differential Equations 134 (1997) 216-268.

    Google Scholar 

  21. P. Mardešić, R. Roussarie, and C. Rousseau, Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Preprint, Centre de Recherches Mathématiques (2002).

  22. N. S. Nadirashvili, On a generalization of Hadamard's three circle theorem. Moscow Univ. Math. Bull. 31 (1976), 30-32.

    Google Scholar 

  23. R. Pérez-Marco, Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (D'après J.-C. Yoccoz). Astérisque 206 (1992), 273-310.

    Google Scholar 

  24. R. Pérez-Marco, Total convergence or general divergence in small divisors. Preprint UCLA arXiv:math.DS/0009029

  25. R. Pérez-Marco and J.-C. Yoccoz, Germes de feuilletages holomorphes à holonomie prescrite. Astérisque 222 (1994), 345-371.

    Google Scholar 

  26. D. Schlomiuk, Elementary first integrals and algebraic invariant curves of differential equations. Exposition. Math. 11 (1993), 433-454.

    Google Scholar 

  27. J.-C. Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques. Astérisque 201–203 (1991), 143-165.

    Google Scholar 

  28. H. żoładek, The problem of center for resonant singular points of polynomial vector fields. J. Differential Equations 137 (1997), 94-118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christopher, C., Mardešić, P. & Rousseau, C. Normalizable, Integrable, and Linearizable Saddle Points for Complex Quadratic Systems in \(\mathbb{C}^2 \) . Journal of Dynamical and Control Systems 9, 311–363 (2003). https://doi.org/10.1023/A:1024643521094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024643521094

Keywords

Navigation